留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强声激励下旋流火焰周期性流动结构的实验研究

刘训臣 王国情

刘训臣, 王国情. 强声激励下旋流火焰周期性流动结构的实验研究[J]. 实验流体力学, 2020, 34(3): 53-60. doi: 10.11729/syltlx20190165
引用本文: 刘训臣, 王国情. 强声激励下旋流火焰周期性流动结构的实验研究[J]. 实验流体力学, 2020, 34(3): 53-60. doi: 10.11729/syltlx20190165
LIU Xunchen, WANG Guoqing. Experimental measurement of the flow field of a swirling flame under large amplitude acoustic forcing[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 53-60. doi: 10.11729/syltlx20190165
Citation: LIU Xunchen, WANG Guoqing. Experimental measurement of the flow field of a swirling flame under large amplitude acoustic forcing[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 53-60. doi: 10.11729/syltlx20190165

强声激励下旋流火焰周期性流动结构的实验研究

doi: 10.11729/syltlx20190165
基金项目: 

国家自然科学基金 91941301

详细信息
    作者简介:

    刘训臣(1983-), 男, 山东青岛人, 博士, 讲师。研究方向:吸收光谱燃烧诊断技术、非接触光学测量技术。通信地址:上海交通大学机械与动力工程学院A501(200240)。E-mail:liuxunchen@sjtu.edu.cn

    通讯作者:

    刘训臣, E-mail:liuxunchen@sjtu.edu.cn

  • 中图分类号: V231.2

Experimental measurement of the flow field of a swirling flame under large amplitude acoustic forcing

  • 摘要: 强声波扰动下旋流流场的动态特征对于理解旋流火焰的非线性响应特性非常重要。基于超高重复频率脉冲串式激光器高速粒子示踪技术测量了强声激励下旋流火焰的动态流场,研究了旋流流场周期性涡结构和流场-火焰动态相互作用。周期性声波扰动会在旋流火焰内剪切层和外剪切层中引起固有涡结构。发现外部涡环在卷曲火焰锋面和改变火焰热量释放速率中起主要作用,而内部涡环分布在火焰根部并会影响中心回流区速度分布。定量提取了声诱导涡环的轨迹、涡量、环量、尺寸、出口速度以及加速度之间关系,发现强声激励下的出口速度和加速度决定了外部涡环的形成和脱落过程。
  • 图  1  旋流燃烧器和激光诊断系统原理图

    Figure  1.  Schematic of the swirl burner and laser diagnostic system

    图  2  f=120 Hz和u′/u=0.8条件下热线风速仪测量的声激励扰动的速度

    Figure  2.  Acoustically perturbed velocity measured by CTA at f=120 Hz and u′/u=0.8

    图  3  甲烷/空气旋流火焰在u′/u=0和u′/u=0.8条件下的时间平均流场和涡量场

    Figure  3.  Time-averaged flow and vorticity fields of methane/air swirling flames at u′/u=0 and u′/u=0.8

    图  4  甲烷/空气旋流火焰在u′/u=0.8条件下轴向速度、水平速度和涡量的均方根分布

    Figure  4.  The RMS (Root Mean Square) values of axial velocity, radial velocity and vorticity of methane/air swirling flames at u′/u=0.8

    图  5  甲烷/空气旋流火焰在f=120 Hz和u′/u=0.8条件下的相平均流场和火焰面等值线,黑色和红色等值线分别代表最大CH*自发光强度的0.4和0.8倍

    Figure  5.  Phase-averaged flow field and flame contours of methane/air swirling flames at f=120 Hz and u′/u=0.8. The black and red contours represent 0.4 and 0.8 times of the maximum CH* intensity, respectively

    图  6  t/T为0~2和轴向位置5~25mm高度处的径向速度和轴向速度分布图

    Figure  6.  The distribution of radial velocity and axial velocity at t/T of 0~2 and axial position of 5~25 mm

    图  7  t/T为0~2和轴向位置5 mm高度处的径向速度和轴向速度分布图

    Figure  7.  The distribution of radial velocity and axial velocity at t/T of 0~2 and axial position of 5 mm

    图  8  甲烷/空气旋流火焰在f=120 Hz和u′/u=0.8条件下外部涡环和内部涡环的涡量分布图

    Figure  8.  Vorticity distribution of the outer and inner vortex rings of methane/air swirling flames at f=120 Hz and u′/u=0.8

    图  9  甲烷/空气旋流火焰在f=120 Hz和u′/u=0.8条件下外部涡环的定量演化过程

    Figure  9.  Quantitative evolution of the outer vortex ring of methane/air swirling flames at f=120 Hz and u′/u=0.8

  • [1] HUANG Y, YANG V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science, 2009, 35(4):293-364. doi: 10.1016/j.pecs.2009.01.002
    [2] CANDEL S, DUROX D, SCHULLER T, et al. Dynamics of swirling flames[J]. Annual Review of Fluid Mechanics, 2014, 46(46):147-173. doi: 10.1146/annurev-fluid-010313-141300
    [3] BELLOWS B D, BOBBA M K, FORTE A, et al. Flame transfer function saturation mechanisms in a swirl-stabilized combustor[J]. Proceedings of the Combustion Institute, 2007, 31(2):3181-3188. doi: 10.1016/j.proci.2006.07.138
    [4] PALIES P, DUROX D, SCHULLER T, et al. The combined dynamics of swirler and turbulent premixed swirling flames[J]. Combustion and Flame, 2010, 157(9):1698-1717. doi: 10.1016/j.combustflame.2010.02.011
    [5] KIM K T, SANTAVICCA D A. Interference mechanisms of acoustic/convective disturbances in a swirl-stabilized lean-premixed combustor[J]. Combustion and Flame, 2013, 160(8):1441-1457. doi: 10.1016/j.combustflame.2013.02.022
    [6] MALANOSKI M, AGUILAR M, O'CONNOR J, et al. Flame leading edge and flow dynamics in a swirling, lifted flame[C]//Proceedings of ASME Conference on ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, 2013: 199-209.
    [7] KVLSHEIMER C, BVCHNER H. Combustion dynamics of turbulent swirling flames[J]. Combustion and Flame, 2002, 131(1-2):70-84. doi: 10.1016/S0010-2180(02)00394-2
    [8] JUNIPER M P, SUJITH R I. Sensitivity and nonlinearity of thermoacoustic oscillations[J]. Annual Review of Fluid Mechanics, 2018, 50(1):661-689. doi: 10.1146/annurev-fluid-122316-045125
    [9] Lieuwen T C. Unsteady combustor physics[M]. New York:Cambridge University Press, 2014.
    [10] BELLOWS B D, BOBBA M K, SEITZMAN J M, et al. Nonlinear flame transfer function characteristics in a swirl-stabilized combustor[J]. Jouranal of Engineering for Gas Turbines and Power Transactions of ASME, 2007, 129(4):954-961. doi: 10.1115/1.2720545
    [11] PALIES P, DUROX D, SCHULLER T, et al. Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames[J]. Combustion and Flame, 2011, 158(10):1980-1991. doi: 10.1016/j.combustflame.2011.02.012
    [12] LIANG H Z, MAXWORTHY T. An experimental investigation of swirling jets[J]. Journal of Fluid Mechanics, 2005, 525:115-159. doi: 10.1017/S0022112004002629
    [13] MELIGA P, GALLAIRE F, CHOMAZ J M. A weakly nonlinear mechanism for mode selection in swirling jets[J]. Journal of Fluid Mechanics, 2012, 699:216-262. doi: 10.1017/jfm.2012.93
    [14] OBERLEITHNER K, SCHIMEK S, PASCHEREIT C O. Shear flow instabilities in swirl-stabilized combustors and their impact on the amplitude dependent flame response:a linear stability analysis[J]. Combustion and Flame, 2015, 162(1):86-99. https://www.sciencedirect.com/science/article/pii/S0010218014002077
    [15] OBERLEITHNER K, SIEBER M, NAYERI C N, et al. Three-dimensional coherent structures in a swirling jet undergoing vortex breakdowwn:stability analysis and empirical mode construction[J]. Journal of Fluid Mechanics, 2011, 679:383-414. doi: 10.1017/jfm.2011.141
    [16] HUANG R F, JUFAR S R, HSU C M. Flow and mixing characteristics of swirling double-concentric jets subject to acoustic excitation[J]. Experiments in Fluids, 2012, 54(1):1-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbf7b686d6610e879242bd125c6a3cdf
    [17] PALIES P, SCHULLER T, DUROX D, et al. Acoustically perturbed turbulent premixed swirling flames[J]. Physics of Fluids, 2011, 23(3):037101. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221342049/
    [18] WANG G Q, LIU X C, LI L, et al. Investigation on the flame front and flow field in acoustically excited swirling flames with and without confinement[J]. Combustion Science and Technology, 2019, 191:1-14. doi: 10.1080/00102202.2018.1452120
    [19] O'CONNOR J, LIEUWEN T. Recirculation zone dynamics of a transversely excited swirl flow and flame[J]. Physics of Fluids, 2012, 24(7):075107. doi: 10.1063/1.4731300
  • 加载中
图(9)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  96
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-09
  • 修回日期:  2020-01-10
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日