留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液固界面滑移研究进展

郑旭 李战华

郑旭, 李战华. 液固界面滑移研究进展[J]. 实验流体力学, 2020, 34(2): 80-88. doi: 10.11729/syltlx20190164
引用本文: 郑旭, 李战华. 液固界面滑移研究进展[J]. 实验流体力学, 2020, 34(2): 80-88. doi: 10.11729/syltlx20190164
ZHENG Xu, Zhanhua SILBER-LI. Research progress of slip on the liquid-solid interface[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 80-88. doi: 10.11729/syltlx20190164
Citation: ZHENG Xu, Zhanhua SILBER-LI. Research progress of slip on the liquid-solid interface[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 80-88. doi: 10.11729/syltlx20190164

液固界面滑移研究进展

doi: 10.11729/syltlx20190164
基金项目: 

国家自然科学基金 11572335

国家自然科学基金 11672358

详细信息
    作者简介:

    郑旭(1981-), 男, 广西南宁人, 博士, 副研究员。研究方向:微纳米流体力学, 微纳尺度流动。通信地址:北京市海淀区北四环西路15号中国科学院力学研究所非线性力学国家重点实验室(100190)。E-mail: zhengxu@lnm.imech.ac.cn

    通讯作者:

    郑旭, E-mail: zhengxu@lnm.imech.ac.cn

  • 中图分类号: O35

Research progress of slip on the liquid-solid interface

  • 摘要: 滑移边界条件是流体力学研究中一个悠久而重要的科学问题,在微纳流控研究中备受关注。近年来,对简单流体(如水)在光滑液固界面的滑移长度的量级逐渐取得共识,而对复杂流体在液固界面的滑移研究方兴未艾。本文综述了从简单流体扩展至复杂流体的研究过程中,滑移实验研究的新的测量结果以及理论描述方法。重点介绍了近期Charlaix教授课题组采用表面力仪测量高分子电解液的滑移结果,以从介观角度理解复杂流体在液固界面的滑移及其影响因素。
  • 图  1  三种不同的滑移边界条件[3]

    Figure  1.  Three different slip boundary conditions[3]

    图  2  接触角对滑移长度的影响[2]

    Figure  2.  The influence of contact angle on the slip length[2]

    图  3  表面力仪测量滑移原理示意图

    Figure  3.  Schematic diagram of measuring slip by surface force apparatus

    图  4  单根纳米管的流动测量[17-18]

    Figure  4.  Flow measurement in single nanotube[17-18]

    图  5  液固界面附近双电层及滑移示意图[13]

    Figure  5.  Schematic diagram of the electric double layer and the slip near the liquid-solid interface[13]

    图  6  动态表面力仪[7]

    Figure  6.  Schematic diagram of the dynamic surface force apparatus and its working mechanism[7]

    图  7  动态表面力仪测量高分子电解液在光滑液固界面上的滑移的实验结果

    Figure  7.  The experimental results of the slip of polyelectrolyte solution on smooth liquid-solid surface measured by DSFA

  • [1] 李战华, 郑旭.微纳米尺度流动实验研究的问题与进展[J].实验流体力学, 2014, 28(3):1-11. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10728.shtml

    LI Z H, ZHENG X. The problems and progress in the experimental study of micro/nano-scale flow[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):1-11. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10728.shtml
    [2] BOCQUET L, CHARLAIX E. Nanofluidics, from bulk to interfaces[J]. Chemical Society Reviews, 2010, 39(3):1073-1095. doi: 10.1039/B909366B
    [3] NETO C, EVANS D R, BONACCURSO E, et al. Boundary slip in Newtonian liquids:a review of experimental studies[J]. Reports on Progress in Physics, 2005, 68(12):2859-2897. doi: 10.1088/0034-4885/68/12/R05
    [4] CUI H H, SILBER-LI Z H, ZHU S N. Flow characteristics of liquids in microtubes driven by a high pressure[J]. Physics of Fluids, 2004, 16(5):1803-1810. doi: 10.1063/1.1691457
    [5] ZHENG X, KONG G P, SILBER-LI Z H. The influence of nano-particles tracers on the slip length measurements by microPTV[J]. Acta Mechanica Sinica, 2013, 29(3):411-419. doi: 10.1007/s10409-013-0027-0
    [6] NAVIER C L M H. Mémoire sur les lois du movement des fluids[J]. Mémoires de l'Académie Royale des Sciences de l'Institut de France, 1823, 6:389-440.
    [7] CROSS B, BARRAUD C, PICARD C, et al. Wall slip of complex fluids:interfacial friction versus slip length[J]. Physical Review Fluids, 2018(3):062001(R).
    [8] 郑旭.光滑及带微结构表面的液体滑移实验研究[D].北京: 中国科学院研究生院, 2009. http://d.g.wanfangdata.com.cn/Thesis_Y1629688.aspx
    [9] TRETHEWAY D C, MEINHART C D. A generating mechanism for apparent fluid slip in hydrophobic microchannels[J]. Physics of Fluids, 2004, 16(5):1509-1515. doi: 10.1063/1.1669400
    [10] COTTIN-BIZONNE C, CROSS B, STEINBERGER A, et al. Boundary slip on smooth hydrophobic surfaces:intrinsic effects and possible artifacts[J]. Physical Review Letters, 2005, 94(5):056102. doi: 10.1103/PhysRevLett.94.056102
    [11] HUANG P, GUASTO J S, BREUER K S. Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry[J]. Journal of Fluid Mechanics, 566:447-464. doi: 10.1017/S0022112006002229
    [12] CHOI C H, KIM C J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J]. Physical Review Letters, 2006, 96(6):066001. doi: 10.1103/PhysRevLett.96.066001
    [13] AUDRY M-C, PIEDNOIR A, JOSEPH P. Amplification of electro-osmotic flows by wall slippage:direct measurements on OTS-surfaces[J]. Faraday Discussions, 2010, 146:113-124. doi: 10.1039/b927158a
    [14] SCHAEFFEL D, YORDANOV S, SCHMELZEISEN M, et al. Hydrodynamic boundary condition of water on hydrophobic surfaces[J]. Physical Review E, 2013, 87(5):051001. doi: 10.1103/PhysRevE.87.051001
    [15] KANNAM S K, TODD B, HANSEN J S. How fast does water flow in carbon nanotubes?[J]. The Journal of Chemical Physics, 2013, 138(9):094701. doi: 10.1063/1.4793396
    [16] LI Z Z, D'ERAMO L, LEE C, et al. Near-wall nanovelocimetry based on total internal reflection fluorescence with continuous tracking[J]. Journal of Fluid Mechanics, 2015, 766:147-171. doi: 10.1017/jfm.2015.12
    [17] SIRIA A, PONCHARAL P, BIANCE A L, et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube[J]. Nature, 2013, 494(7438):455-458. doi: 10.1038/nature11876
    [18] SECCHI E, MARBACH S, NIGUÈS A, et al. Massive radius-dependent flow slippage in single carbon nanotubes[J]. Nature, 2016, 537(7619):210-213. doi: 10.1038/nature19315
    [19] CUENCA A, BODIGUEL H. Submicron flow of polymer solutions:slippage reduction due to confinement[J]. Physical Review Letters, 2013, 110(10):108304. doi: 10.1103/PhysRevLett.110.108304
    [20] BÄUMCHEN O, JACOBS K. Slip effects in polymer thin films[J]. Journal of Physics:Condensed Matter, 2010, 22(3):033102. doi: 10.1088/0953-8984/22/3/033102
    [21] BARRAUD C, CROSS B, PICARD C, et al. Large slippage and depletion layer at the polyelectrolyte/solid interface[J]. Soft Matter, 2019, 15:6308-6317. doi: 10.1039/C9SM00910H
    [22] GARCIA L, BARRAUD C, PICARD C, et al. A micro-nano-rheometer for the mechanics of soft matter at interfaces[J]. Review of Scientific Instruments, 2016, 87(11):113906. doi: 10.1063/1.4967713
    [23] LEROY S, STEINBERGER A, COTTIN-BIZONNE C, et al. Hydrodynamic interaction between a spherical particle and an elastic surface:a gentle probe for soft thin films[J]. Physical Review Letters, 2012, 108(26):264501. doi: 10.1103/PhysRevLett.108.264501
    [24] LEE T, CHARRAULT E, NETO C. Interfacial slip on rough, patterned and soft surfaces:a review of experiments and simulations[J]. Advances in Colloid and Interface Science, 2014, 210:21-38. doi: 10.1016/j.cis.2014.02.015
    [25] LAUGA E, BRENNER M P, STONE H A. Microfluidics: the no-slip boundary condition[M]//Tropea C, Yarin A L, Foss J F. Springer handbook of experimental fluid mechanics. Berlin, Heidelberg: Springer, 2006: 1219-1240.
    [26] JING D L, BHUSHAN B. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag:a review[J]. Journal of Colloid and Interface Science, 2015, 454:152-179. doi: 10.1016/j.jcis.2015.05.015
    [27] BARNES H A. A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscositmers:its cause, character, and cure[J]. Journal of Non-Newtonian Fluid Mechanics, 1995, 56(3):221-251. doi: 10.1016/0377-0257(94)01282-M
    [28] BRILLOUIN M. Leçons sur la viscositédes liquides et des gaz[M]. Paris:Gauthier-Villars, 1907.
    [29] BOCQUET L, BARRAT J L. Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids[J]. Physical Review E, 1994, 49(4):3079-3092. doi: 10.1103/PhysRevE.49.3079
    [30] HUANG D M, SENDNER C, HORINEK D, et al. Water slippage versus contact angle:a quasiuniversal relationship[J]. Physical Review Letters, 2008, 101(22):226101. doi: 10.1103/PhysRevLett.101.226101
    [31] LUAN B Q, ZHOU R H. Wettability and friction of water on a MoS2 nanosheet[J]. Applied Physics Letters, 2016, 108(13):131601. doi: 10.1063/1.4944840
    [32] CHOI C H, WESTIN K J A, BREUER K S. Apparent slip flows in hydrophilic and hydrophobic microchannels[J]. Physics of Fluids, 2003, 15(10):2897-2902. doi: 10.1063/1.1605425
    [33] 李战华, 吴健康, 胡国庆, 等.微流控芯片中的流体流动[M].北京:科学出版社, 2012.
    [34] MAJUMDER M, CHOPRA N, ANDREWS R, et al. Nanoscale hydrodynamics:enhanced flow in carbon nanotubes[J]. Nature, 2005, 438(7064):44. doi: 10.1038/438044a
    [35] HOLT J K, PARK H G, WANG Y M, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776):1034-1037. doi: 10.1126/science.1126298
    [36] WHITBY M, CAGONON L, TAHANOU M. Enhanced fluid flow through nanoscale carbon pipes[J]. Nano Letters, 2008, 8(9):2632-2637. doi: 10.1021/nl080705f
    [37] QIN X C, YUAN Q Z, ZHAO Y P, et al. Measurement of the rate of water translocation through carbon nanotubes[J]. Nano Letters, 2011, 11(5):2173-2177. doi: 10.1021/nl200843g
    [38] SHARMA P, MOTTE J F, FOURNEL F, et al. A direct sensor to measure minute liquid flow rates[J]. Nano Letters, 2018, 18(9):5726-5730. doi: 10.1021/acs.nanolett.8b02332
    [39] JOSEPH P, TABELING P. Direct measurement of the apparent slip length[J]. Physical Review E, 2005, 71(3 Pt 2A):035303. doi: 10.1103-PhysRevE.71.035303/
    [40] LAUGA E. Apparent slip due to the motion of suspended particles in flows of electrolyte solutions[J]. Langmuir, 2004, 20:8924-8930. doi: 10.1021/la049464r
    [41] ZHENG X, SHI F, SILBER-LI Z H. Study on the statistical intensity distribution (SID) of fluorescent nanoparticles in TIRFM measurement[J]. Microfluidics and Nanofluidics, 2018, 22:127. doi: 10.1007/s10404-018-2145-2
    [42] VINOGRADOVA O I. Drainage of a thin liquid film confined between hydrophobic surfaces[J]. Langmuir, 1995, 11(6):2213-2220. doi: 10.1021/la00006a059
    [43] MARBACH S, BOCQUET L. Osmosis, from molecular insights to large-scale applications[J]. Chemical Society Reviews, 2019, 48(100):3102-3144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8827835ebf6eca8fce12b3537da45be7
    [44] SCHOCH R B, HAN J Y, RENAUD P. Transport phenomena in nanofluidics[J]. Review of Modern Physics, 2008, 80(3):839-883. doi: 10.1103/RevModPhys.80.839
    [45] SILKINA E, ASMOLOV E S, VINOGRADOVA O I. Electro-osmotic flow in hydrophobic nanochannels[J]. Physical Chemistry Chemical Physics, 2019, 21(41):23036-23043. doi: 10.1039/C9CP04259H
    [46] DE GENNES P G. Polymer solutions near an interface. adsorption and depletion layers[J]. Macromolecules, 1981, 14(6):1637-1644. doi: 10.1021/ma50007a007
    [47] THOMPSON P A, TROIAN S M. A general boundary condition for liquid flows at solid surfaces[J]. Nature, 1997, 389(6649):360-362. doi: 10.1038/38686
    [48] GRAHAM M D. Fluid dynamics of dissolved polymer molecules in confined geometries[J]. Annual Review of Fluid Mechanics, 2011, 43(1):273-298. doi: 10.1146/annurev-fluid-121108-145523
    [49] LAINÉA, JUBIN L, CANALE L, et al. MicroMegascope based dynamic surface force apparatus[J]. Nanotechnology, 2019, 30:195502. doi: 10.1088/1361-6528/ab02ba
    [50] CHURAEV N V, DERJAGUIN B V, MULLER V M. Surface forces[M]. New York:Springer US, 1987.
    [51] DAIGUJI H. Ion transport in nanofluidic channels[J]. Chemical Society Reviews, 2010, 39(3):901-911. doi: 10.1103-PhysRevLett.93.035901/
    [52] CHENG C, JIANG G P, SIMON G P, et al. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes[J]. Nature Nanotechnology, 2018, 13(8):685-690. doi: 10.1038/s41565-018-0181-4
    [53] ZHANG H C, TIAN Y, JIANG L. Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels[J]. Nano Today, 2016, 11(1):61-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d05b7e0c1415f79aee124a211be6d61e
    [54] BETZIG E. Nobel Lecture:Single molecules, cells, and super-resolution optics[J]. Reviews of Modern Physics, 2015, 87(4):1153-1168. doi: 10.1103/RevModPhys.87.1153
    [55] HELL S W. Nobel lecture:Nanoscopy with freely propagating light[J]. Reviews of Modern Physics, 2015, 87(4):1169-1181. doi: 10.1103/RevModPhys.87.1169
    [56] SHU J J, TEO J B M, CHAN W K. Fluid velocity slip and temperature jump at a solid surface[J]. Applied Mechanics Reviews, 2017, 69(2):020801. doi: 10.1115/1.4036191
    [57] SNOEYINK C, WERELEY S. A novel 3D3C particle tracking method suitable for microfluidic flow measurements[J]. Experiments in Fluids, 2013, 54(1):1453. doi: 10.1007/s00348-012-1453-7
    [58] MAALI A, BOISGARD R, CHRAIBI H, et al. Viscoelastic drag forces and crossover from no-slip to slip boundary conditions for flow near air-water interfaces[J]. Physical Review Letters, 2017, 118(8):084501. doi: 10.1103/PhysRevLett.118.084501
    [59] VARAGNOLO S, FERRARO D, FANTINEL P, et al. Stick-slip sliding of water drops on chemically heterogeneous surfaces[J]. Physical Review Letters, 2013, 111(6):066101. doi: 10.1103/PhysRevLett.111.066101
  • 加载中
图(7)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  153
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-17
  • 修回日期:  2020-02-24
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日