留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Taylor-Couette流动特性与减阻实验研究进展

张文云 胡海豹 文俊 曹刚 任刘珍

张文云, 胡海豹, 文俊, 等. Taylor-Couette流动特性与减阻实验研究进展[J]. 实验流体力学, 2021, 35(2): 104-111. doi: 10.11729/syltlx20190163
引用本文: 张文云, 胡海豹, 文俊, 等. Taylor-Couette流动特性与减阻实验研究进展[J]. 实验流体力学, 2021, 35(2): 104-111. doi: 10.11729/syltlx20190163
ZHANG Wenyun, HU Haibao, WEN Jun, et al. Advances in experimental research on Taylor-Couette flow characteristics and drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 104-111. doi: 10.11729/syltlx20190163
Citation: ZHANG Wenyun, HU Haibao, WEN Jun, et al. Advances in experimental research on Taylor-Couette flow characteristics and drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 104-111. doi: 10.11729/syltlx20190163

Taylor-Couette流动特性与减阻实验研究进展

doi: 10.11729/syltlx20190163
基金项目: 

国家自然科学基金 51679203

国家自然科学基金 5207127

基础前沿项目 JCKY2018*****18

中央高校基本科研业务费专项资金 3102018gxc007

西北工业大学研究生创意创新种子基金 ZZ2019068

详细信息
    作者简介:

    张文云(1994-), 男, 甘肃天水人, 硕士。研究方向: 实验流体力学(Taylor-Couette减阻)。通信地址: 陕西省西安市碑林区友谊西路127号西北工业大学航海学院(710072)。E-mail: 1425767467@qq.com

    通讯作者:

    胡海豹, E-mail: huhaibao@nwpu.edu.cn

  • 中图分类号: O368

Advances in experimental research on Taylor-Couette flow characteristics and drag reduction

  • 摘要: 间隙中充满流体的同轴转子可简化为经典的Taylor-Couette流动模型,该模型具有结构简单、对称度高和便于开展高精度实验测试等特点,被广泛应用于基本流体力学问题研究。涉及Taylor-Couette流动的转轴类结构在工程领域普遍存在,开展Taylor-Couette流动特性与减阻方法研究具有重要的经济价值。本文系统地介绍了Taylor-Couette流动的主要无量纲影响参数、流场结构和扭矩特性;总结了基于Taylor-Couette流动减阻方法的研究进展,并根据减阻原理将其划分为通用减阻方法和特有减阻方法2类;最后对Taylor-Couette流动减阻研究进行展望,为后续研究工作提供参考。
  • 图  1  Taylor-Couette流动示意图[2]

    Figure  1.  The schematic diagram of Taylor-Couette flow[2]

    图  2  不同雷诺数条件下Taylor-Couette流动的流动体系[16]

    Figure  2.  Flow regime of Taylor-Couette flow at different Reynolds numbers[16]

    图  3  高泰勒数下Taylor-Couette流动瞬时速度场[17](η=0.714)

    Figure  3.  Flow field of Taylor-Couette flow at high Taylor numbers[17]

    图  4  不同几何结构下的Taylor涡的形态[18, 20]

    Figure  4.  Taylor vortex characteristic with different geometry structures[18, 20]

    图  5  不同半径比对扭矩的影响规律[25]

    Figure  5.  Torque scaling with different radii ratios[25]

    图  6  Taylor-Couette流动通用减阻方法

    Figure  6.  Regular drag reduction of Taylor-Couette flow

    图  7  Taylor-Couette流动结构减阻方法[48]

    Figure  7.  Structure drag reduction method of Taylor-Couette flow[48]

    图  8  Taylor-Couette流动特有减阻方法

    Figure  8.  Special drag reduction methods of Taylor-Couette flow

  • [1] LI Y B, GU Y Q, MOU J G, et al. Current research status of biomimetic drag-reducing antifouling paints with low surface energy[J]. Materials Protection, 2014, 47(6): 48-51.
    [2] ECKHARDT B, GROSSMANN S, LOHSE D. Fluxes and energy dissipation in thermal convection and shearflows[J]. Europhysics Letters (EPL), 2007, 78(2): 24001. doi: 10.1209/0295-5075/78/24001
    [3] ECKHARDT B, GROSSMANN S, LOHSE D. Scaling of global momentum transport in Taylor-Couette and pipe flow[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2000, 18(3): 541-544. doi: 10.1007/s100510070044
    [4] LARSON R G, SHAQFEH E S G, MULLER S J. A purely elastic instability in Taylor-Couette flow[J]. Journal of Fluid Mechanics, 1990, 218(1): 573-600. doi: 10.1017/s0022112090001124
    [5] BARCILON A, BRINDLEY J, LESSEN M, et al. Marginal instability in Taylor-Couette flows at a very high Taylor number[J]. Journal of Fluid Mechanics, 1979, 94(3): 453-463. doi: 10.1017/s0022112079001129
    [6] AHLERS G. Low-temperature studies of therayieigh-bénard instability and turbulence[J]. Physical Review Letters, 1974, 33(20): 1185-1188. doi: 10.1103/physrevlett.33.1185
    [7] MULLIN T, CLIFFE K A, PFISTER G. Unusual time-dependent phenomena in Taylor-Couette flow at moderately low Reynolds numbers[J]. Physical Review Letters, 1987, 58(21): 2212-2215. doi: 10.1103/physrevlett.58.2212
    [8] LATHROP D P, FINEBERG J, SWINNEY H L. Turbulent flow between concentric rotating cylinders at large Reynolds number[J]. Physical Review Letters, 1992, 68(10): 1515-1518. doi: 10.1103/physrevlett.68.1515
    [9] KADANOFF L P. Turbulent heat flow: structures andscaling[J]. Physics Today, 2001, 54(8): 34-39. doi: 10.1063/1.1404847
    [10] GROSSMANN S, LOHSE D, SUN C. High-Reynolds number Taylor-couette turbulence[J]. Annual Review of Fluid Mechanics, 2016, 48(1): 53-80. doi: 10.1146/annurev-fluid-122414-034353
    [11] HULTMARK M, VALLIKIVI M, BAILEY S C C, et al. Turbulent pipe flow at extreme Reynolds numbers[J]. Physical Review Letters, 2012, 108(9): 094501. doi: 10.1103/PhysRevLett.108.094501
    [12] MARUSIC I, MCKEON B J, MONKEWITZ P A, et al. Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and keyissues[J]. Physics of Fluids, 2010, 22(6): 065103. doi: 10.1063/1.3453711
    [13] ZAGAROLA M V, SMITS A J. Mean-flow scaling of turbulent pipeflow[J]. Journal of Fluid Mechanics, 1998, 373: 33-79. doi: 10.1017/s0022112098002419
    [14] ECKHARDT B, GROSSMANN S, LOHSE D. Torque scaling in turbulent Taylor-Couette flow between independently rotating cylinders[J]. Journal of Fluid Mechanics, 2007, 581: 221-250. doi: 10.1017/s0022112007005629
    [15] TAYLOR G I. Stability of a viscous liquid contained between two rotatingcylinders[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1923, 102(718): 541-542. doi: 10.1098/rspa.1923.0013
    [16] ANDERECK C D, LIU SS, SWINNEY H L. Flow regimes in a circular Couette system with independently rotating cylinders[J]. Journal of Fluid Mechanics, 1986, 164: 155-183. doi: 10.1017/s0022112086002513
    [17] OSTILLA-MÓNICO R, VAN DER POEL E P, VERZICCO R, et al. Exploring the phase diagram of fully turbulent Taylor-Couette flow[J]. Journal of Fluid Mechanics, 2014, 761: 1-26. doi: 10.1017/jfm.2014.618
    [18] WIMMER M. An experimental investigation of Taylor vortex flow between conical cylinders[J]. Journal of Fluid Mechanics, 1995, 292: 205-227. doi: 10.1017/s0022112095001492
    [19] WIMMER M. Vortex patterns between cones andcylinders[M]//NATO ASI Series. Boston, MA: Springer US, 1992: 205-211. doi: 10.1007/978-1-4615-3438-9_22
    [20] HOCKING L M. The instability of flow in the narrow gap between two prolate spheroids. part ii. arbitrary axis ratio[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1981, 34(4): 475-488. doi: 10.1093/qjmam/34.4.475
    [21] 刘栋, 王春林. 温度梯度影响下泰勒涡流的PIV实验研究[C]//第七届全国流体力学学术会议论文集. 2012.
    [22] 滕浩, 刘难生, 陆夕云. 具有径向温度的Taylor-Couette流的直接数值模拟[C]//第十四届全国物理力学学术会议缩编文集. 2016.
    [23] YI M K, KIM C. Experimental studies on the Taylor instability of dilute polymersolutions[J]. Journal of Non-Newtonian Fluid Mechanics, 1997, 72(2-3): 113-139. doi: 10.1016/s0377-0257(97)00032-3
    [24] STEFANI F, GUNDRUM T, GERBETH G, et al. Experimental evidence formagnetorotational instability in a Taylor-Couette flow under the influence of a helical magnetic field[J]. Physical Review Letters, 2006, 97(18): 184502. doi: 10.1103/PhysRevLett.97.184502
    [25] OSTILLA-MÓNICO R, HUISMAN S G, JANNINK T J G, et al. Optimal Taylor-Couette flow: radius ratio dependence[J]. Journal of Fluid Mechanics, 2014, 747: 1-29. doi: 10.1017/jfm.2014.134
    [26] DENG R S, WANG C H, SMITH K A. Bubble behavior in a Taylorvortex[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 73(3 Pt 2): 036306. doi: 10.1103/PhysRevE.73.036306
    [27] 黄桥高, 潘光, 武昊, 等. 超疏水表面减阻水洞实验及减阻机理研究[J]. 实验流体力学, 2011, 25(5): 21-25. doi: 10.3969/j.issn.1672-9897.2011.05.005

    HUANG Q G, PAN G, WU H, et al. Investigation about drag reduction water tunnel experiment and mechanism ofsuperhydrophobic surface[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 21-25. doi: 10.3969/j.issn.1672-9897.2011.05.005
    [28] 李新华, 董守平, 赵志勇. 平板及减阻沟槽表面雷诺切应力的实验研究[J]. 实验流体力学, 2006, 20(1): 40-44. doi: 10.3969/j.issn.1672-9897.2006.01.010

    LI X H, DONG S P, ZHAO Z Y. Experimental study on Reynolds shear stress in turbulent boundary layers over smooth and drag reduction groovedsurface[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(1): 40-44. doi: 10.3969/j.issn.1672-9897.2006.01.010
    [29] MURAI Y, OIWA H, TAKEDA Y. Frictional drag reduction in bubblyCouette-Taylor flow[J]. Physics of Fluids, 2008, 20(3): 034101. doi: 10.1063/1.2884471
    [30] FOKOUA G N, GABILLET C, AUBERT A, et al. Effect of bubble's arrangement on the viscous torque in bubbly Taylor-Couette flow[J]. Physics of Fluids, 2015, 27(3): 034105. doi: 10.1063/1.4915071
    [31] FERRANTE A, ELGHOBASHI S. On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden withmicrobubbles[J]. Journal of Fluid Mechanics, 2004, 503: 345-355. doi: 10.1017/s0022112004007943
    [32] LU J C, FERNÁNDEZ A, TRYGGVASON G. The effect of bubbles on the wall drag in a turbulent channel flow[J]. Physics of Fluids, 2005, 17(9): 095102. doi: 10.1063/1.2033547
    [33] Van den BERG T H, Van GILS D P M, LATHROP D P, et al. Bubbly turbulent drag reduction is a boundary layer effect[J]. Physical Review Letters, 2007, 98(8): 084501. doi: 10.1103/PhysRevLett.98.084501
    [34] Van GILS D P M, GUZMAN D N, SUN C, et al. The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor-Couette flow[J]. Journal of Fluid Mechanics, 2013, 772: 317-347. doi: 10.1017/jfm.2013.96
    [35] VERSCHOOF R A, Van der VEEN R C, SUN C, et al. Bubble drag reduction requires large bubbles[J]. Physical Review Letters, 2016, 117(10): 104502. doi: 10.1103/PhysRevLett.117.104502
    [36] BAKHUIS D, VERSCHOOF R A, MATHAI V, et al. Finite-sized rigid spheres in turbulent Taylor-Couette flow: effect on the overall drag[J]. Journal of Fluid Mechanics, 2018, 850: 246-261. doi: 10.1017/jfm.2018.462
    [37] SRINIVASAN S, KLEINGARTNER J A, GILBERT J B, et al. Sustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable superhydrophobic surfaces[J]. Physical Review Letters, 2015, 114(1): 014501. doi: 10.1103/PhysRevLett.114.014501
    [38] SARANADHI D, CHEN D Y, KLEINGARTNER J A, et al. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface[J]. Science Advances, 2016, 2(10): e1600686. doi: 10.1126/sciadv.1600686
    [39] HU H B, WEN J, BAO L Y, et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips[J]. Science Advances, 2017, 3(9): e1603288. doi: 10.1126/sciadv.1603288
    [40] Van BUREN T, SMITS A J. Substantial drag reduction in turbulent flow using liquid-infused surfaces[J]. Journal of Fluid Mechanics, 2017, 827: 448-456. doi: 10.1017/jfm.2017.503
    [41] DEAN B, BHUSHAN B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: areview[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1929): 4775-4806. doi: 10.1098/rsta.2010.0201
    [42] GREIDANUS A J, DELFOS R, TOKGOZ S, et al. Turbulent Taylor-Couette flow over riblets: drag reduction and the effect of bulk fluid rotation[J]. Experiments in Fluids, 2015, 56(5): 1-13. doi: 10.1007/s00348-015-1978-7
    [43] ZHU X J, OSTILLA-MÓNICO R, VERZICCO R, et al. Direct numerical simulation of Taylor-Couette flow with grooved walls: torque scaling and flow structure[J]. Journal of Fluid Mechanics, 2016, 794: 746-774. doi: 10.1017/jfm.2016.179
    [44] VERSCHOOF R A, ZHU X J, BAKHUIS D, et al. Rough-wall turbulent Taylor-Couette flow: The effect of the rib height[J]. The European Physical Journal E, Soft Matter, 2018, 41(10): 125. doi: 10.1140/epje/i2018-11736-2
    [45] ZHU X J, VERSCHOOF R A, BAKHUIS D, et al. Wall roughness induces asymptotic ultimate turbulence[J]. Nature Physics, 2018, 14(4): 417-423. doi: 10.1038/s41567-017-0026-3
    [46] GROSSMANN S, LOHSE D. Scaling in thermal convection: a unifyingtheory[J]. Journal of Fluid Mechanics, 2000, 407: 27-56. doi: 10.1017/s0022112099007545
    [47] PRIGENT A, DUBRULLE B, DAUCHOT O, et al. The Taylor-Couette flow: the hydrodynamic twin of Rayleigh-Bénard convection[M]//Dynamics of Spatio-Temporal Cellular Structures. New York: Springer New York, 2006: 225-242. doi: 10.1007/978-0-387-25111-0_13
    [48] XUE Y B, YAO Z Q, LI C X. Structural drag reduction in Taylor-Couette flow[J]. Applied Mechanics and Materials, 2013, 300-301: 285-289. doi: 10.4028/www.scientific.net/amm.300-301.285
    [49] MULLIN T, BROOKE BENJAMIN T. Transition tooscillatory motion in the Taylor experiment[J]. Nature, 1980, 288(5791): 567-569. doi: 10.1038/288567a0
    [50] MANSOUR M, ALI M H, ABD EL-MAKSOUD R M. Experimental study of expansion and compression effects on the stability of Taylor vortexflow[J]. Fluid Dynamics Research, 2016, 48(4): 045502. doi: 10.1088/0169-5983/48/4/045502
    [51] MARTÍNEZ-ARIAS B, PEIXINHO J, CRUMEYROLLE O, et al. Effect of the number of vortices on the torque scaling in Taylor-Couette flow[J]. Journal of Fluid Mechanics, 2014, 748: 756-767. doi: 10.1017/jfm.2014.213
    [52] BRAUCKMANN H J, ECKHARDT B. Direct numerical simulations of local and global torque in Taylor-Couette flow up to Re=30000[J]. Journal of Fluid Mechanics, 2013, 718: 398-427. doi: 10.1017/jfm.2012.618
    [53] XIAO Q, LIM T T, CHEW Y T. Effect of acceleration on the wavy Taylor vortex flow[J]. Experiments in Fluids, 2002, 32(6): 639-644. doi: 10.1007/s00348-001-0399-y
    [54] Dutcher C S, Muller S J. The effects of drag reducing polymers on flow stability Insights from the Taylor-Couette problem[J]. Korea-Australia Rheology Journal, 2009, 21(4): 213-223. http://www.researchgate.net/publication/298947340_The_effects_of_drag_reducing_polymers_on_flow_stability_Insights_from_the_Taylor-Couette_problem
    [55] LIU D, KANG I S, CHA J E, et al. Experimental study on radial temperature gradient effect of a Taylor-Couette flow with axial wall slits[J]. Experimental Thermal and Fluid Science, 2011, 35(7): 1282-1292. doi: 10.1016/j.expthermflusci.2011.04.016
    [56] DETERS T, EGBERS C. The Taylor-Couette system with radial temperature gradient[J]. Journal of Physics: Conference Series, 2005, 14: 138-142. doi: 10.1088/1742-6596/14/1/017
    [57] TENG H, LIU N S, LU X Y, et al. Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient[J]. Physics of Fluids, 2015, 27(12): 125101. doi: 10.1063/1.4935700
    [58] STEFANI F, GUNDRUM T, GERBETH G, et al. Experimental evidence formagnetorotational instability in a Taylor-Couette flow under the influence of a helical magnetic field[J]. Physical Review Letters, 2006, 97(18): 184502. doi: 10.1103/PhysRevLett.97.184502
    [59] PRIEDE J, GRANTS I, GERBETH G. Inductionless magnetorotational instability in a Taylor-Couette flow with a helical magnetic field[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(4 Pt 2): 047303. doi: 10.1103/PhysRevE.75.047303
    [60] SHAQFEH E S G, MULLER S J, LARSON R G. The effects of gap width and dilute solution properties on the viscoelastic Taylor-Couette instability[J]. Journal of Fluid Mechanics, 1992, 235: 285-317. doi: 10.1017/s0022112092001113
    [61] GRAHAM M D. Effect of axial flow on viscoelastic Taylor-Couette instability[J]. Journal of Fluid Mechanics, 1998, 360: 341-374. doi: 10.1017/s0022112098008611
  • 加载中
图(8)
计量
  • 文章访问数:  489
  • HTML全文浏览量:  253
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-02
  • 修回日期:  2020-03-26
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日