留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面微纳结构对气-水界面稳定性和流动减阻的影响

姚朝晖 张静娴 郝鹏飞

姚朝晖, 张静娴, 郝鹏飞. 表面微纳结构对气-水界面稳定性和流动减阻的影响[J]. 实验流体力学, 2020, 34(2): 73-79. doi: 10.11729/syltlx20190161
引用本文: 姚朝晖, 张静娴, 郝鹏飞. 表面微纳结构对气-水界面稳定性和流动减阻的影响[J]. 实验流体力学, 2020, 34(2): 73-79. doi: 10.11729/syltlx20190161
YAO Zhaohui, ZHANG Jingxian, HAO Pengfei. Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 73-79. doi: 10.11729/syltlx20190161
Citation: YAO Zhaohui, ZHANG Jingxian, HAO Pengfei. Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 73-79. doi: 10.11729/syltlx20190161

表面微纳结构对气-水界面稳定性和流动减阻的影响

doi: 10.11729/syltlx20190161
基金项目: 

国家自然科学基金 11872362

详细信息
    作者简介:

    姚朝晖(1968-), 女, 安徽巢县人, 教授。研究方向:微纳米流体力学。通信地址:北京中国科学院大学工程科学学院(101408)。E-mail:yaozh@ucas.edu.cn

    通讯作者:

    姚朝晖, E-mail:yaozh@ucas.edu.cn

  • 中图分类号: O363.2

Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction

  • 摘要: 利用压力-流量测量和流动显示方法研究了6种具有不同微纳结构尺寸的超疏水表面的减阻效果以及表面微结构形状对气-水界面稳定性的影响。实验结果表明:设计的各种超疏水表面在层流和湍流下均具有一定的减阻效果;在相同的固体面积分数情况下,微结构间距越小,减阻效果越好;在具有最小结构间距的微纳二级结构表面上实现了最大减阻率(38.6±4.5)%。流动显示观测发现:减阻率与微结构的层级、尺寸、形貌及槽道流态有关,它们均对气-水界面稳定性有一定的影响,揭示了复合微纳结构之所以能够显著提升减阻效果,是由于添加纳米二级结构减小了原有表面的固体面积分数,并提高了气-水界面的稳定性。此外,对于具有双内凹(伞状)微结构表面的微槽道,即使表面为亲水材料,也可以有效捕捉气体,形成稳定的气-水界面,从而实现超疏水性能。
  • 图  1  实验槽道示意图

    Figure  1.  Schematic of the experimental channel

    图  2  实验中超疏水表面上方的气膜状态

    Figure  2.  Statuses of air plastron on SH surfaces during measurement

    图  3  阻力系数f随雷诺数Re的分布

    Figure  3.  Friction factor f for smooth and SH surfaces

    图  4  微槽道内3类微脊结构

    Figure  4.  Schematic diagrams of three types of micro-ridge structures

    图  5  微槽道流动显示装置

    Figure  5.  Micro-channel flow visualization device

    图  6  3种微槽道侧壁类型的入流情况

    Figure  6.  Formation processes of the air-water interfaces for three types of micro-ridge structures

    图  7  3种结构上方的气-水界面情况及力平衡关系示意

    Figure  7.  Schematic diagrams illustrating the air-water interface for three types of micro-ridge structures and force balance

    表  1  实验槽道的表面特性

    Table  1.   Characteristics of the test channel surfaces

    表面类型微柱边长w/μm微柱间距s/μm微柱高度h/μm固体面积分数静态接触角/(°)
    普通Si------1.00067.4±2.0
    OTS161616300.250143.0±1.2
    OTS16+nano1616300.144150.2±1.2
    OTS888300.250143.2±0.2
    OTS8+nano88300.144148.3±1.5
    OTS444300.250145.0±1.6
    OTS4+nano44300.144147.9±1.5
    下载: 导出CSV

    表  2  各超疏水表面的减阻率

    Table  2.   Drag reductions (DR) of different SH surfaces

    超疏水表面减阻率DR(层流)减阻率DR(湍流)
    OTS16(13.1±4.7)%(14.4±11.2)%
    OTS16+nano(14.3±6.0)%(23.5±6.5)%
    OTS8(14.6±2.9)%(29.1±1.4)%
    OTS8+nano(27.3±1.6)%(31.2±1.9)%
    OTS4(29.7±1.6)%(34.7±8.8)%
    OTS4+nano(37.2±3.0)%(38.6±4.5)%
    下载: 导出CSV
  • [1] RASTEGARI A, AKHAVAN R. The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets[J]. Journal of Fluid Mechanics, 2018, 838:68-104. doi: 10.1017/jfm.2017.865
    [2] RAAYAI-ARDAKANI S, MCKINLEY G H. Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows[J]. Physics of Fluids, 2017, 29(9):093605. doi: 10.1063/1.4995566
    [3] ROTHSTEIN J P. Slip on superhydrophobic surfaces[J]. Annual Review of Fluid Mechanics, 2010, 42(42):89-109. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0808.1393
    [4] HEMEDA A A, GAD-EL-HAK M, TAFRESHI H V. Effects of hierarchical features on longevity of submerged superhydrophobic surfaces with parallel grooves[J]. Physics of Fluids, 2014, 26(8):082103. doi: 10.1063/1.4891363
    [5] 吕鹏宇, 薛亚辉, 段慧玲.超疏水材料表面液气界面的稳定性及演化规律[J].力学进展, 2016, 46(1):179-225. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601004

    LYU P Y, XUE Y H, DUAN H L. Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces[J]. Advances in Mechanics, 2016, 46(1):179-225. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601004
    [6] LEE C, KIM C J. Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls[J]. Langmuir, 2009, 25(21):12812-12818. doi: 10.1021/la901824d
    [7] JONES P R, HAO X Q, CRUZ-CHU E R, et al. Sustaining dry surfaces under water[J]. Scientific Reports, 2015, 5(1):12311. doi: 10.1038/srep12311
    [8] TUTEJA A, CHOI W, MABRY J M, et al. Robust omniphobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47):18200-18205. doi: 10.1073/pnas.0804872105
    [9] LIU T L, KIM C J. Turning a surface superrepellent even to completelywetting liquids[J]. Science, 2014, 346(6213):1096-1100. doi: 10.1126/science.1254787
    [10] OU J, PEROT B, ROTHSTEIN J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids, 2004, 16(12):4635-4643. doi: 10.1063/1.1812011
    [11] JOSEPH P, COTTIN-BIZONNE C, BENOIT J M, et al. Slippage of water past superhydrophobic carbon nanotube forests in microchannels[J]. Physical Review Letters, 2006, 97(15):156104. doi: 10.1103/PhysRevLett.97.156104
    [12] CHOI C H, ULMANELLA U, KIM J, et al. Effective slip and friction reduction in nanograted superhydrophobic microchannels[J]. Physics of Fluids, 2006, 18(8):087105. doi: 10.1063/1.2337669
    [13] BYUN D, KIM J, KO H S, et al. Direct measurement of slip flows in superhydrophobic microchannels with transverse grooves[J]. Physics of Fluids, 2008, 20(11):113601. doi: 10.1063/1.3026609
    [14] HAO P F, WONG C, YAO Z H, et al. Laminar drag reduction in hydrophobic microchannels[J]. Chemical Engineering & Technology, 2009, 32(6):912-918. http://www.ecs.umass.edu/mie/faculty/rothstein/pub_files/PhysFluids2004v16p4635_4643.pdf
    [15] WOOLFORD B, PRINCE J, MAYNES D, et al. Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls[J]. Physics of Fluids, 2009, 21(8):085106. doi: 10.1063/1.3213607
    [16] DANIELLO R J, WATERHOUSE N E, ROTHSTEIN J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2009, 21(8):085103. doi: 10.1063/1.3207885
    [17] SU Y W, JI B H, HUANG Y G, et al. Nature's design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation[J]. Langmuir, 2010, 26(24):18926-18937. doi: 10.1021/la103442b
    [18] BHUSHAN B, KOCH K, JUNG Y C. Biomimetic hierarchical structure for self-cleaning[J]. Applied Physics Letters, 2008, 93(9):093101. doi: 10.1063/1.2976635
    [19] SBRAGAGLIA M, PROSPERETTI A. A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces[J]. Physics of Fluids, 2007, 19(4):043603. doi: 10.1063/1.2716438
    [20] BLEVINS R D. Applied Fluid Dynamics Handbook[M]. New York:Van Nostrand Reinhold, 1984.
    [21] LU S, YAO Z H, HAO P F, et al. Drag reduction in ultra hydrophobic channels with micro-nano structured surfaces[J]. Science China-Physics Mechanics & Astronomy, 2010, 53(7):1298-1305. doi: 10.1007/s11433-010-4035-9
    [22] ZHANG J X, TIAN H P, YAO Z H, et al. Evolutions of hairpin vortexes over a super hydrophobic surface in turbulent boundary layer flow[J]. Physics of Fluids, 2016, 28(9):095106. doi: 10.1063/1.4962513
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  250
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-16
  • 修回日期:  2020-01-03
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日