留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微流控芯片技术在血细胞变形和流动性分析研究中的应用进展

戚晓菁 李学进

戚晓菁, 李学进. 微流控芯片技术在血细胞变形和流动性分析研究中的应用进展[J]. 实验流体力学, 2020, 34(2): 1-10. doi: 10.11729/syltlx20190158
引用本文: 戚晓菁, 李学进. 微流控芯片技术在血细胞变形和流动性分析研究中的应用进展[J]. 实验流体力学, 2020, 34(2): 1-10. doi: 10.11729/syltlx20190158
QI Xiaojing, LI Xuejin. Research progress on mechanical and flow properties of blood cells in microcirculation using microfluidic devices[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 1-10. doi: 10.11729/syltlx20190158
Citation: QI Xiaojing, LI Xuejin. Research progress on mechanical and flow properties of blood cells in microcirculation using microfluidic devices[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 1-10. doi: 10.11729/syltlx20190158

微流控芯片技术在血细胞变形和流动性分析研究中的应用进展

doi: 10.11729/syltlx20190158
基金项目: 浙江大学百人计划项目
详细信息
    作者简介:

    戚晓菁(1996-), 女, 浙江杭州人, 博士研究生。研究方向:微纳米流体力学、细胞力学。通信地址:浙江省杭州市西湖区浙大路38号浙江大学航空航天学院工程力学系。E-mail:11924030@zju.edu.cn

    通讯作者:

    李学进, E-mail: xuejin_li@zju.edu.cn

  • 中图分类号: O35

Research progress on mechanical and flow properties of blood cells in microcirculation using microfluidic devices

  • 摘要: 近年来,随着微流控芯片技术的快速发展,微流控芯片在生物医学研究领域得到了广泛关注。由于其具有高通量、高灵敏度、集成化、低消耗及可控化等诸多特点,为在多细胞水平研究细胞迁移和分选动力学提供了新的技术平台。利用微流控芯片微通道结构设计灵活的特点,可在实验条件下模拟正常的生理和病理条件下的复杂血管;其微米尺寸的微通道也适于单细胞引入、操纵及检测。因此,用微流控芯片技术在单细胞层面对细胞生物力学性能表征也引起了广泛关注。以健康和疾病中的血细胞为例,从单细胞变形、流动、黏附、机械疲劳等力学性能表征到多细胞迁移及分离动力学等方面归纳目前微流控芯片技术在细胞力学分析和表征方面的研究进展。
  • 图  1  血细胞在血管内流动的动力学特征及微流控仿生模型设计

    Figure  1.  The hydrodynamics of blood flow and its microfluidic culture models

    图  2  基于单通道微流控装置研究健康红细胞在毛细管内的流动和变形[10]。(a)~(d)显示红细胞在流过毛细管不同区域时的变形

    Figure  2.  In vitro microfluidic model for investigating the translocation process of a healthy human red blood cell (RBC) through a microcapillary[10]. The series of images (a)~(d) show the shape of the RBC as it is squeezed through the narrow microchannel

    图  3  基于单通道微流控装置研究疟疾感染红细胞在不同尺寸的毛细管内的流动及堵塞行为[14]。自左至右毛细管的宽度分别为8、6、4及2 μm。感染初期的环状体红细胞可顺利通过毛细管道((a1)~(a4)); 感染末期处于裂殖体阶段的红细胞仅能通过8 μm的毛细管道(b1), 但无法通过6 μm及以下的毛细管并导致微通道的堵塞((b2)~(b4))

    Figure  3.  Micrographs of malaria-infected RBCs traversal across microfluidic channels. Ring-stage infected RBCs can pass through all constricted microchannels ((a1)~(a4)); schizont-stage infected RBCs block all but the 8 μm microchannel ((b1)~(b4))

    图  4  基于单通道"漏斗形收缩"微流控装置研究疟疾感染红细胞的流动及变形行为[15]。(a)感染初期的环状体红细胞在较小的压力梯度下可通过漏斗形收缩微管道; (b)感染末期处于裂殖体阶段的红细胞则需要较大的压力梯度才能通过微细管; (c)基于实验结果统计得到的不同感染阶段的红细胞膜皮质张力

    Figure  4.  Analysis of the flow behavior and deformability of malaria-infected RBCs in microfluidic channels with multiple funnel-shaped constrictions. (a) A ring-stage infected RBC could transit rapidly through the funnel constriction at a low pressure; (b) A schizont-stage infected RBC, which is hardly deformed, requires a high pressure to drive through the constriction; (c) Histogram of the measured cortical tension of uninfected and malaria-infected RBCs

    图  5  基于多通道微流控装置研究受疟疾感染红细胞在毛细管内的流动行为[17]。(a)微流道装置示意图。微流道内有多组并排的宽度仅为3 μm的微管道阵列, 红细胞流过微管道阵列时需变形才能通过; (b)通过实验获得的健康红细胞(蓝色箭头所示)和疟疾感染红细胞(红色箭头所示)在多通道毛细管内的流动现象

    Figure  5.  Microfluidic platform for studying the flow behavior of malaria-infected RBCs in the microchannel[17]. (a) Schematic diagram of the device design; the spacing between pillars is 3 μm and the depth of the device is 4.2 μm; (b) Micrographs of uninfected (blue arrows) and malaria-infected (red arrows) RBCs in the microchannel

    图  6  基于多通道微流控装置研究镰状细胞贫血症下红细胞的流动和变形性能[18]。(a)通过调控氧气水平和脱氧程度控制红细胞的镰变和可逆转镰变过程; (b)当处于缺氧状态时, 红细胞发生镰变后导致其形状发生变化(黄色箭头所示); (c)微流道装置示意图。微流道内有多组并排的宽度仅为4 μm的微通道阵列, 红细胞需变形才能通过; (d)在有氧(上图)和脱氧条件(下图)下, 观察红细胞在毛细管道内的流动及堵塞现象

    Figure  6.  Microfluidic platform for studying sickle cell behavior under transient hypoxic conditions[18]. (a) Schematic diagram of microfluidic device; (b) Visual determination of cell sickling events from morphological changes in RBC membrane; (c) Schematic diagram of microfluidic device; the microfluidic channel contains periodic obstacles forming 15-μm-long, 4-μm-wide and 5-μm-high microgates; (d) Individual RBC behavior under oxygenated (Oxy, upper) and deoxygenated (DeOxy, lower) states[18]

    图  7  基于多通道微流控装置模拟微血管堵塞及血栓形成过程[25]。(a)微流控芯片装置图; (b)微流控芯片中多通路微管道网络示意图, 其中最中间一排的微管道宽度只有30 μm; (c)微流控芯片上"内皮细胞化"微血管分叉结构; (d)血细胞-内皮细胞黏附及多细胞聚集导致的微血管堵塞现象

    Figure  7.  In vitro microfluidic microvasculature model for modeling of the microvascular occlusion and thrombosis that occur in hematologic disease[25]. (a)~(b) Illustration of the device design; (c) Characterization of the "endothelialized" microvasculature on the chip; (d) The observation of microchannel occlusion due to a combination of increased adhesion and cell stiffness

    图  8  基于惯性效应和黏弹性效应设计的微流控装置用于特定类型血细胞的分离采集[34-35]。(a)微流道内疟疾感染红细胞和健康红细胞的分离[34]; (b)微流道内循环肿瘤细胞、白细胞和红细胞的分离[35]

    Figure  8.  Schematic illustration of cell separation in microfluidic channels based on cell size and deformability [34-35]. (a) Separation of malaria-infected RBCs and uninfected RBCs in microfluidic channel [34]; (b) Separation of RBCs, white blood cells (WBCs) and tumor cells in microfluidic channel[35]

    图  9  微流控通道中细胞分离示意图。(a)~(b)基于惯性升力和磁场效应从微量血液样品中实现肿瘤细胞和血细胞的分离采集[30, 41]; (c)~(d)通过超声波微流控装置从血细胞混合液中分离肿瘤细胞[43-45]

    Figure  9.  Schematic illustration of cell separation in microfluidic channel. (a)~(b) Separation of blood cells and tumor cells in ferrofluids[30, 41]; (c)~(d) acoustic separation of tumor cells from blood samples[43-45]

  • [1] 林炳承.微纳流控芯片实验室[M].北京:科学出版社, 2013.
    [2] STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices:Microfluidics toward a lab-on-a-chip[J]. Annu Rev Fluid Mech, 2004, 36:381-411. doi: 10.1146/annurev.fluid.36.050802.122124
    [3] 秦建华, 刘婷姣, 林炳承.微流控芯片细胞实验室[J].色谱, 2009, 27(5):655-661. doi: 10.3321/j.issn:1000-8713.2009.05.017

    QIN J H, LIU T J, LIN B C. Cell laboratory on a microfluidic chip[J]. Chinese Journal of Chromatography, 2009, 27(5):655-661. doi: 10.3321/j.issn:1000-8713.2009.05.017
    [4] 袁闱墨, 薛春东, 刘波, 等.一种高通量测量单细胞弹性模量的微流控芯片[J].北京生物医学工程, 2019, 38(5):450-456. doi: 10.3969/j.issn.1002-3208.2019.05.002

    YUAN W M, XUE C D, LIU B, et al. A high-throughput microluidic chip for trapping single cells and measuring single cells' elastic moduli[J]. Beijing Biomed Eng, 2019, 38(5):450-456. doi: 10.3969/j.issn.1002-3208.2019.05.002
    [5] SACKMANN E K, FULTON A L, BEEBE D J. The present and future role of microfluidics in biomedical research[J]. Nature, 2014, 507(7491):181-189. doi: 10.1038/nature13118
    [6] XI W, KONG F, YEO J C, et al. Soft tubular microfluidics for 2D and 3D applications[J]. P Natl Acad Sci USA, 2017, 114(40):10590-10595. doi: 10.1073/pnas.1712195114
    [7] SECOMB T W. Blood flow in the microcirculation[J]. Annu Rev Fluid Mech, 2017, 49:443-461. doi: 10.1146/annurev-fluid-010816-060302
    [8] CHIEN S. Red-cell deformability and its relevance to blood-flow[J]. Annu Rev Physiol, 1987, 49:177-192. doi: 10.1146/annurev.ph.49.030187.001141
    [9] SEBASTIAN B, DITTRICH P S. Microfluidics to mimic blood flow in health and disease[J]. Annu Rev Fluid Mech, 2018, 50:483-504. doi: 10.1146/annurev-fluid-010816-060246
    [10] LI J, LYKOTRAFITIS G, DAO M, et al. Cytoskeletal dynamics of human erythrocyte[J]. P Natl Acad Sci USA, 2007, 104(12):4937-4942. doi: 10.1073/pnas.0700257104
    [11] QUINN D J, PIVKIN I, WONG S Y, et al. Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems[J]. Ann Biomed Eng, 2011, 39(3):1041-1050. doi: 10.1007/s10439-010-0232-y
    [12] ZHENG Y, NGUYEN J, WANG C, et al. Electrical measurement of red blood cell deformability on a microfluidic device[J]. Lab Chip, 2013, 13(16):3275-3283. doi: 10.1039/c3lc50427a
    [13] LI J P, SAPKOTA A, KIKUCHI D, et al. Red blood cells aggregability measurement of coagulating blood in extracorporeal circulation system with multiple-frequency electrical impedance spectroscopy[J]. Biosens Bioelectron, 2018, 112:79-85. doi: 10.1016/j.bios.2018.04.020
    [14] SHELBY J P, WHITE J, GANESAN K, et al. A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum infected erythrocytes[J]. P Natl Acad Sci USA, 2003, 100(25):14618-14622. doi: 10.1073/pnas.2433968100
    [15] GUO Q, REILING S J, ROHRBACH P, et al. Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum[J]. Lab Chip, 2012, 12(6):1143-1150. doi: 10.1039/c2lc20857a
    [16] GUO Q, DUFFY S P, MATTHEWS K, et al. Microfluidic analysis of red blood cell deformability[J]. J Biomech, 2014, 47(8):1767-1776. doi: 10.1016/j.jbiomech.2014.03.038
    [17] BOW H, PIVKIN I V, DIEZ-SILVA M, et al. A microfabricated deformability-based flow cytometer with application to malaria[J]. Lab Chip, 2011, 11(6):1065-1073. doi: 10.1039/c0lc00472c
    [18] DU E, DIEZ-SILVA M, KATO G J, et al. Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis[J]. P Natl Acad Sci USA, 2015, 112(5):1422-1427. doi: 10.1073/pnas.1424111112
    [19] PAULING L, ITANO H A, SINGER S J, et al. Sickle cell anemia, a molecular disease[J]. Science, 1949, 110(2865):543-548. doi: 10.1126/science.110.2865.543
    [20] BUNN H F. Mechanisms of disease-Pathogenesis and treatment of sickle cell disease[J]. New Engl J Med, 1997, 337(11):762-769. doi: 10.1056/NEJM199709113371107
    [21] LI X, DU E, DAO M, et al. Patient-specific modeling of individual sickle cell behavior under transient hypoxia[J]. Plos Comput Biol, 2017, 13(3):e1005426. doi: 10.1371/journal.pcbi.1005426
    [22] PAPAGEORGIOU D P, ABIDI S Z, CHANG H Y, et al. Simultaneous polymerization and adhesion under hypoxia in sickle cell disease[J]. P Natl Acad Sci USA, 2018, 115(38):9473-9478. doi: 10.1073/pnas.1807405115
    [23] DENG Y X, PAPAGEORGIOU D P, CHANG H Y, et al. Quantifying shear-induced deformation and detachment of individual adherent sickle red blood cells[J]. Biophys J, 2019, 116(2):360-371. doi: 10.1016/j.bpj.2018.12.008
    [24] QIU Y Z, AHN B, SAKURAI Y, et al. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease[J]. Nat Biomed Eng, 2018, 2(6):453-463. doi: 10.1038/s41551-018-0224-z
    [25] TSAI M, KITA A, LEACH J, et al. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology[J]. J Clin Invest, 2012, 122(1):408-418. doi: 10.1172/JCI58753
    [26] YANG S, JI B Y, UNDAR A, et al. Microfluidic devices for continuous blood plasma separation and analysis during pediatric cardiopulmonary bypass procedures[J]. Asaio J, 2006, 52(6):698-704. doi: 10.1097/01.mat.0000249015.76446.40
    [27] MIELCZAREK W S, OBAJE E A, BACHMANN T T, et al. Microfluidic blood plasma separation for medical diagnostics:is it worth it?[J]. Lab Chip, 2016, 16(18):3441-3448. doi: 10.1039/C6LC00833J
    [28] LIU C, XUE C D, CHEN X D, et al. Size-based separation of particles and cells utilizing viscoelastic effects in straight microchannels[J]. Anal Chem, 2015, 87(12):6041-6048. doi: 10.1021/acs.analchem.5b00516
    [29] 姚琳, 白亮, 吴亮其, 等.微流控芯片技术在细胞生物学研究中的应用进展[J].中国细胞生物学学报, 2011, 33(11):1254-1266. http://d.old.wanfangdata.com.cn/Periodical/txsj201606210

    YAO L, BAI L, WU L Q, et al. Recent applications of microfluidic technology in the field of cell biology[J]. Chin J Cell Biol, 2011, 33(11):1254-1266. http://d.old.wanfangdata.com.cn/Periodical/txsj201606210
    [30] KARABACAK N M, SPUHLER P S, FACHIN F, et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples[J]. Nat Protoc, 2014, 9(3):694-710. doi: 10.1038/nprot.2014.044
    [31] 董建伟, 夏凌, 李攻科.循环肿瘤细胞富集技术研究进展[J].分析化学, 2018, 46(12):1851-1862. doi: 10.11895/j.issn.0253-3820.181515

    DONG J W, XIA L, LI G K. Progress in enrichment techniques of circulating tumor cells[J]. Chin J Anal Chem, 2018, 46(12):1851-1862. doi: 10.11895/j.issn.0253-3820.181515
    [32] LIU C, GUO J Y, TIAN F, et al. Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows[J]. ACS Nano, 2017, 11(7):6968-6976. doi: 10.1021/acsnano.7b02277
    [33] ZHANG X B, WU Z Q, WANG K, et al. Gravitational sedimentation induced blood de lamination for continuous plasma separation on a microfluidics chip[J]. Anal Chem, 2012, 84(8):3780-3786. doi: 10.1021/ac3003616
    [34] HOU H W, BHAGAT A A S, CHONG A G L, et al. Deformability based cell margination-A simple microfluidic design for malaria-infected erythrocyte separation[J]. Lab Chip, 2010, 10(19):2605-2613. doi: 10.1039/c003873c
    [35] BHAGAT A A S, HOU H W, LI L D, et al. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation[J]. Lab Chip, 2011, 11(11):1870-1878. doi: 10.1039/c0lc00633e
    [36] PETCHAKUP C, TAY H M, LI H K H, et al. Integrated inertial-impedance cytometry for rapid label-free leukocyte isolation and profiling of neutrophil extracellular traps (NETs)[J]. Lab Chip, 2019, 19(10):1736-1746. doi: 10.1039/C9LC00250B
    [37] HOU H W, WU L D, AMADOR-MUNOZ D P, et al. Broad spectrum immunomodulation using biomimetic blood cell margination for sepsis therapy[J]. Lab Chip, 2016, 16(4):688-699. doi: 10.1039/C5LC01110H
    [38] TENG Y, PANG M S, HUANG J Y, et al. Mechanical characterization of cancer cells during TGF-beta 1-induced epithelial-mesenchymal transition using an electrodeformation-based microchip[J]. Sensor Actuat B-Chem, 2017, 240:158-167. doi: 10.1016/j.snb.2016.08.104
    [39] TENG Y, ZHU K, XIONG C Y, et al. Electrodeformation-based biomechanical chip for quantifying global viscoelasticity of cancer cells regulated by cell cycle[J]. Anal Chem, 2018, 90(14):8370-8378. doi: 10.1021/acs.analchem.8b00584
    [40] NASCIMENTO E M, NOGUEIRA N, SILVA T, et al. Dielectrophoretic sorting on a microfabricated flow cytometer:Label free separation of Babesia bovis infected erythrocytes[J]. Bioelectrochemistry, 2008, 73(2):123-128. doi: 10.1016/j.bioelechem.2008.04.018
    [41] ZHAO W J, CHENG R, LIM S H, et al. Biocompatible and label-free separation of cancer cells from cell culture lines from white blood cells in ferrofluids[J]. Lab Chip, 2017, 17(13):2243-2255. doi: 10.1039/C7LC00327G
    [42] TASOGLU S, KHOORY J A, TEKIN H C, et al. Levitational image cytometry with temporal resolution[J]. Adv Mater, 2015, 27(26):3901-3908. doi: 10.1002/adma.201405660
    [43] COLLINS D J, KHOO B L, MA Z, et al. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming[J]. Lab Chip, 2017, 17(10):1769-17777. doi: 10.1039/C7LC00215G
    [44] DING X Y, PENG Z L, LIN S C S, et al. Cell separation using tilted-angle standing surface acoustic waves[J]. P Natl Acad Sci USA, 2014, 111(36):12992-12997. doi: 10.1073/pnas.1413325111
    [45] LI P, MAO Z M, PENG Z L, et al. Acoustic separation of circulating tumor cells[J]. P Natl Acad Sci USA, 2015, 112(16):4970-4975. doi: 10.1073/pnas.1504484112
    [46] DU E, DAO M, SURESH S. Quantitative biomechanics of healthy and diseased human red blood cells using dielectrophoresis in a microfluidic system[J]. Extreme Mech Lett, 2014, 1:35-41. doi: 10.1016/j.eml.2014.11.006
    [47] QIANG Y H, LIU J, DU E. Dynamic fatigue measurement of human erythrocytes using dielectrophoresis[J]. Acta Biomater, 2017, 57:352-362. doi: 10.1016/j.actbio.2017.05.037
    [48] QIANG Y H, LIU J, DAO M, et al. Mechanical fatigue of human red blood cells[J]. P Natl Acad Sci USA, 2019, 116(40):19828-19834. doi: 10.1073/pnas.1910336116
    [49] BARABINO G A, PLATT M O, KAUL D K. Sickle cell biomechanics[J]. Annu Rev Biomed Eng, 2010, 12:345-367. doi: 10.1146/annurev-bioeng-070909-105339
    [50] LI X J, DAO M, LYKOTRAFITIS G, et al. Biomechanics and biorheology of red blood cells in sickle cell anemia[J]. J Biomech, 2017, 50:34-41. doi: 10.1016/j.jbiomech.2016.11.022
    [51] JACOB H S. The defective red blood cell in hereditary spherocytosis[J]. Annu Rev Med, 1969, 20:41-46. doi: 10.1146/annurev.me.20.020169.000353
    [52] LI H, LU L, LI X J, et al. Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders[J]. P Natl Acad Sci USA, 2018, 115(38):9574-9579. doi: 10.1073/pnas.1806501115
    [53] 林炳承, 罗勇, 刘婷姣, 等.器官芯片[M].北京:科学出版社, 2019.
  • 加载中
图(9)
计量
  • 文章访问数:  394
  • HTML全文浏览量:  133
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-28
  • 修回日期:  2020-02-25
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日