留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低矮建筑标模风荷载的主动湍流模拟试验研究

胡尚瑜 李秋胜 张明

胡尚瑜, 李秋胜, 张明. 低矮建筑标模风荷载的主动湍流模拟试验研究[J]. 实验流体力学, 2020, 34(4): 22-29. doi: 10.11729/syltlx20190157
引用本文: 胡尚瑜, 李秋胜, 张明. 低矮建筑标模风荷载的主动湍流模拟试验研究[J]. 实验流体力学, 2020, 34(4): 22-29. doi: 10.11729/syltlx20190157
HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. doi: 10.11729/syltlx20190157
Citation: HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. doi: 10.11729/syltlx20190157

低矮建筑标模风荷载的主动湍流模拟试验研究

doi: 10.11729/syltlx20190157
基金项目: 

国家自然科学基金 51878198

国家自然科学基金 51668015

详细信息
    作者简介:

    胡尚瑜(1981-), 男, 湖南永州人, 博士, 教授。研究方向:建筑结构风工程现场实测及风洞实验。通信地址:广东省汕头市金平区大学路243号汕头大学(515063)。E-mail:hushangyu@stu.edu.cn

    通讯作者:

    胡尚瑜, E-mail:hushangyu@stu.edu.cn

  • 中图分类号: TU312+.1

Active turbulence simulation study of wind loads on standard low-rise building

  • 摘要: 采用主动与被动湍流相结合的方法,在阵风风洞中模拟了不同湍流强度和湍流积分尺度的流场,开展了1:50低矮建筑标准模型测压试验研究。针对气流分离再附流动作用下的屋面中轴线区域和锥形涡作用下的屋面角部边缘区域,着重分析了不同来流湍流强度和顺风向湍流积分尺度影响下的风压变化规律。研究结果表明:湍流强度对气流分离作用下的迎风屋面屋檐区域以及锥形涡作用下的屋面角部边缘区域的平均风压系数、脉动风压系数和峰值负压系数均有显著影响;而湍流积分尺度对这些区域的平均风压系数影响甚微,脉动风压系数和峰值负压系数(绝对值)随湍流积分尺度的增大而有所增大。
  • 图  1  主动阵风风洞结构简图

    Figure  1.  Active gust wind tunnel structure diagram

    图  2  平均风速剖面

    Figure  2.  Mean wind speed profiles

    图  3  平均湍流剖面

    Figure  3.  Mean turbulence intensity profiles

    图  4  平均屋面高度处的脉动风速功率谱

    Figure  4.  Wind fluctuation spectra at roof height

    图  5  TTU原型实测屋屋面测点布置及风向角定义

    Figure  5.  Locations of pressure taps and definition of incident wind direction for TTU building

    图  6  湍流积分尺度对270°平均风向角屋面中轴线区域风压系数的影响

    Figure  6.  Wind pressure coefficient of central axis for mean wind direction 270° under different turbulence integral scale lengths

    图  7  湍流强度对270°平均风向角屋面中轴线区域风压系数的影响

    Figure  7.  Wind pressure coefficient of central axis for mean wind direction 270° under different turbulence intensities

    图  8  湍流积分尺度对角部测点50101平均和脉动风压系数的影响

    Figure  8.  Mean and standard wind pressure coefficients for corner Tap 50101 under different turbulence integral scale lengths

    图  9  湍流积分尺度对角部测点50901平均和脉动风压系数的影响

    Figure  9.  Mean and standard wind pressure coefficients for corner Tap 50901 under different turbulence integral scale lengths

    图  10  湍流积分尺度对角部测点50209平均和脉动风压系数的影响

    Figure  10.  Mean and standard wind pressure coefficients for corner Tap 50209 under different turbulence integral scale lengths

    图  11  湍流强度对角部测点50101平均和脉动风压系数的影响

    Figure  11.  Mean and standard wind pressure coefficients for corner Tap 50101 under different turbulence intensities

    图  12  湍流强度对角部测点50901平均和脉动风压系数的影响

    Figure  12.  Mean and standard wind pressure coefficients for corner Tap 50901 under different turbulence intensities

    图  13  湍流强度对角部测点50209平均和脉动风压系数的影响

    Figure  13.  Mean and standard wind pressure coefficients for corner Tap 50209 under different turbulence intensities

    表  1  主动阵风风洞风场参数试验值和现场实测值

    Table  1.   Experimental values and field measured values of active gust wind tunnel wind field parameters

    高度 流场工况 Iu/% Iv/% Iw/% Lu/m Lv/m Lw/m
    10 m Full scale 19.7 14.5 8.8 125.0 58.5 31.5
    CBL-1 15.8 12.9 9.5 31.0 14.0 8.0
    CBL-1 and Active Gust 17.4 12.0 8.7 81.5 16.0 8.5
    CBL-2 12.6 9.4 7.1 24.5 7.0 4.5
    3.950 m Full scale 21.7 16.0 5.5 93.8 59.0 14.7
    CBL-1 17.3 14.7 9.5 27.5 15.5 4.0
    CBL-1 and Active Gust 18.3 14.1 9.3 52.0 16.0 4.0
    CBL-2 14.8 10.7 8.3 23.0 5.5 3.5
    注:湍流积分尺度(风洞试验值)系依据泰勒的对流“凝固湍流”假设、对各向脉动分量进行自相关函数积分计算得到,对应的实测值根据几何模型比例(1:50)进行了相应转换。
    下载: 导出CSV
  • [1] CERMAK J E. Progress in physical modeling for wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54/55:439-455. doi: 10.1016/0167-6105(94)00064-K
    [2] 裴城, 马存明, 王明志, 等.紊流积分尺度对典型桥梁断面静力系数影响规律的风洞试验研究[J].土木工程学报, 2020, 53(1):64-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmgcxb202001008

    PEI C, MA C M, WANG M Z, et al. Wind tunnel tests on the influence of turbulent integral scale on aerostatic coefficients of typical bridge section[J]. China Civil Engineering Journal, 2020, 53(1):64-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmgcxb202001008
    [3] 陈凯, 毕卫涛, 魏庆鼎.振动尖塔对风洞模拟大气湍流边界层的作用[J].空气动力学学报, 2003, 21(2):211-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb200302012

    CHEN K, BI W T, WEI Q D. Vibrational spires method in wind tunnel simulation of atmospheric boundary layer[J]. Acta Aerodynamica Sinica, 2003, 21(2):211-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb200302012
    [4] NISHI A, KIKUGAWA H, MATSUDA Y, et al. Turbulence control in multiple-fan wind tunnels[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67/68:861-872. doi: 10.1016/S0167-6105(97)00124-4
    [5] CAO S Y, NISHI A, KIKUGAWA H, et al. Reproduction of wind velocity history in a multiple fan wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15):1719-1729. doi: 10.1016/S0167-6105(02)00282-9
    [6] 潘韬, 赵林, 曹曙阳, 等.主动来流条件类平板断面气动力荷载效应分析[J].实验流体力学, 2010, 24(6):32-37, 56. http://www.syltlx.com/CN/abstract/abstract9904.shtml

    PAN T, ZHAO L, CAO S Y, et al. Analysis of aerodynamic load effects on thin plat section under active control flow condition[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(6):32-37, 56. http://www.syltlx.com/CN/abstract/abstract9904.shtml
    [7] 陈彬, 姚裕, 易弢, 等.基于回流多风扇主动控制引导风洞的风场模拟试验[J].南京航空航天大学学报, 2019, 51(3):374-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njhkht201903015

    CHEN B, YAO Y, YI T, et al. Wind field simulation in small-scale model of closed-circuit multiple controlled fan wind tunnel[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(3):374-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njhkht201903015
    [8] HAAN F L Jr, SARKAR P P, SPENCER-BERGER N J. Development of an active gust generation mechanism on a wind tunnel for wind engineering and industrial aerodynamics applications[J]. Wind and Structures, 2006, 9(5):369-386. doi: 10.12989/was.2006.9.5.369
    [9] HUANG P, CHOWDHURY A G, BITSUAMLAK G, et al. Development of devices and methods for simulation of hurricanewinds in a full-scale testing facility[J]. Wind and Structures, 2009, 12(2):151-177.
    [10] ASGHARI MOONEGHI M, IRWIN P, CHOWDHURY A G. Partial turbulence simulation method for predicting peak wind loads on small structures and building appurtenances[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 157:47-62. doi: 10.1016/j.jweia.2016.08.003
    [11] BROWN T M, LIU Z Z, MORRISON M J. Comparison of field and full-scale laboratory pressure data at the IBHS research center[C]//Proceedings of the 13rd International Conference on Wind Engineering. 2011.
    [12] HANGAN H, REFAN M, JUBAYER C, et al. Novel techniques in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171:12-33. doi: 10.1016/j.jweia.2017.09.010
    [13] 黄汉杰, 王卫华, 蒋科林.大比例TTU模型表面风压分布试验研究[J].建筑结构学报, 2016, 37(12):58-64, 73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzjgxb201612008

    HUANG H J, WANG W H, JIANG K L. Experimental research on surface wind pressure distribution on large scale TTU model[J]. Journal of Building Structures, 2016, 37(12):58-64, 73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzjgxb201612008
    [14] LEVITAN M L, MEHTA K C. Texas tech field experiments for wind loads part 1:building and pressure measuring system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43(1-3):1565-1576. doi: 10.1016/0167-6105(92)90372-H
    [15] LEVITAN M L, MEHTA K C. Texas tech field experiments for wind loads part II:meteorological instrumentation and terrain parameters[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43(1-3):1577-1588. doi: 10.1016/0167-6105(92)90373-I
    [16] HAM H J, BIENKIEWICZ B. Wind tunnel simulation of TTU flow and building roof pressure[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 77/78:119-133. doi: 10.1016/S0167-6105(98)00137-8
    [17] SMITH D A, MORSE S M, MEHTA K C. WERFL data description user's manual: Wind Engineering Research Field Laboratory selected data sets for comparison to model-scale, full-scale and computational fluid dynamics simulations[EB/OL]. (2017)[2019-10-21]. http://www.depts.ttu.edu/nwi/Pubs/ReportsJournals/ReportsJournals/WERFL_Data_Description_2_08_17b.pdf.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  128
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-28
  • 修回日期:  2020-01-14
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日