留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金属橡胶和介电泳效应的微粒循环过滤实验研究

宋春磊 任玉坤 何文俊 姜天一 姜洪源

宋春磊, 任玉坤, 何文俊, 等. 基于金属橡胶和介电泳效应的微粒循环过滤实验研究[J]. 实验流体力学, 2020, 34(2): 39-45. doi: 10.11729/syltlx20190152
引用本文: 宋春磊, 任玉坤, 何文俊, 等. 基于金属橡胶和介电泳效应的微粒循环过滤实验研究[J]. 实验流体力学, 2020, 34(2): 39-45. doi: 10.11729/syltlx20190152
SONG Chunlei, REN Yukun, HE Wenjun, et al. Experimental study on circulating filtration of micro particles based on metal rubber and dielectrophoretic effect[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 39-45. doi: 10.11729/syltlx20190152
Citation: SONG Chunlei, REN Yukun, HE Wenjun, et al. Experimental study on circulating filtration of micro particles based on metal rubber and dielectrophoretic effect[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 39-45. doi: 10.11729/syltlx20190152

基于金属橡胶和介电泳效应的微粒循环过滤实验研究

doi: 10.11729/syltlx20190152
基金项目: 

国家自然科学基金 11672095

详细信息
    作者简介:

    宋春磊(1994-), 男, 内蒙古赤峰人, 博士研究生。研究方向:微纳流体的电动操控。通信地址:黑龙江省哈尔滨市南岗区花园街道西大直街92号哈尔滨工业大学机械楼3008室(150001)。E-mail:sclei@hit.edu.cn

    通讯作者:

    任玉坤, E-mail: rykhit@hit.edu.cn

    姜洪源, E-mail: jhy_hit@hit.edu.cn

  • 中图分类号: O359

Experimental study on circulating filtration of micro particles based on metal rubber and dielectrophoretic effect

  • 摘要: 为改善金属橡胶板的过滤能力,将多孔金属橡胶板与介电泳力相结合,并利用液态金属在受限空间内的高效泵送功能,研究了金属橡胶板对5 μm聚苯乙烯微球的过滤性能。实验中,将一对金属橡胶板平行嵌入至闭环微流体循环通道内,以实现介电泳力的交流电场梯度。结果表明:由于金属橡胶板内部孔径远大于聚苯乙烯微球直径,在未施加交流电信号的情况下,较难实现过滤功能;而对两个金属橡胶板适当通电,则电解液中的聚苯乙烯微球将被短距离的介电泳力收集于金属橡胶板周围,明显提高过滤效率。
  • 图  1  过滤芯片通道结构

    Figure  1.  The structure of the composite filtration channel chip

    图  2  数值仿真的几何模型

    Figure  2.  Geometric model of numerical simulation

    图  3  不同金属橡胶板间距时粒子过滤的数值模拟结果

    Figure  3.  Numerical simulation results of particle filtration at different spacings

    图  4  通道内流体的交流电热现象

    Figure  4.  AC-electrothermal phenomenon of fluid in the channel

    图  5  不同交流电信号幅值时粒子过滤的数值模拟结果

    Figure  5.  Numerical simulation results of particle filtration under different AC signal amplitudes

    图  6  不同流速时粒子过滤的数值模拟结果

    Figure  6.  Numerical simulation results of particle filtration at different flow rates

    图  7  未施加交流电信号时过滤前后通道中粒子数的变化

    Figure  7.  Changes in the number of particles in the channel before and after filtration when no AC signal is applied

    图  8  未施加交流电信号时粒子数与过滤效率随时间的变化趋势

    Figure  8.  Variance of particles number and filtration efficiency with time when no AC signal is applied

    图  9  施加交流电信号时过滤前后通道中粒子数的变化

    Figure  9.  Changes in the number of particles in the channel before and after filtration when AC signal is applied

    图  10  施加交流电信号时粒子数与过滤效率随时间的变化趋势

    Figure  10.  Variance of particles number and filtration efficiency with time when AC signal is applied

  • [1] WANG S L, BAI H B, LU G H. The research progress and application expectation of metal rubber vibration isolator[C]//Proc of International Conference on Materials, Environmental and Biological Engineering. 2015.
    [2] 国亚东, 夏宇宏, 陈照波, 等.金属橡胶过滤材料孔径分布特性研究[J].过滤与分离, 2008, 18(2):8-10. doi: 10.3969/j.issn.1005-8265.2008.02.003

    GUO Y D, XIA Y H, CHEN Z B, et al. Research on pore size distributions of metal rubber filtering materials[J]. Journal of Filtration & Separation, 2008, 18(2):8-10. doi: 10.3969/j.issn.1005-8265.2008.02.003
    [3] 邹广平, 刘泽, 程贺章, 等.预紧量与振动量级对金属橡胶减振器振动特性影响研究[J].振动与冲击, 2015, 34(22):173-177, 191. http://d.old.wanfangdata.com.cn/Periodical/zdycj201522030

    ZOU G P, LIU Z, CHENG H Z, et al. Effects of preloading and vibration level on the vibration characteristics of metal rubber damper[J]. Journal of Vibration and Shock, 2015, 34(22):173-177, 191. http://d.old.wanfangdata.com.cn/Periodical/zdycj201522030
    [4] 白鸿柏, 路纯红, 曹凤利, 等.金属橡胶调压阀流阻性能试验研究[J].机械科学与技术, 2013, 32(12):1864-1868. http://d.old.wanfangdata.com.cn/Periodical/jxkxyjs201312032

    BAI H B, LU C H, CAO F L, et al. Experimental study of flow resistance of a metal rubber pressure regulation valve[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(12):1864-1868. http://d.old.wanfangdata.com.cn/Periodical/jxkxyjs201312032
    [5] 姜洪源, 国亚东, 陈照波, 等. 0Cr18Ni9Ti金属橡胶过滤材料最大孔径研究[J].稀有金属材料与工程, 2009, 38(12):2116-2120. doi: 10.3321/j.issn:1002-185X.2009.12.010

    JIANG H Y, GUO Y D, CHEN Z B, et al. Research on maximal pore size of 0Cr18Ni9Ti metal rubber filtering material[J]. Rare Metal Materials and Engineering, 2009, 38(12):2116-2120. doi: 10.3321/j.issn:1002-185X.2009.12.010
    [6] 侯军芳, 白鸿柏, 刘英杰, 等.新型金属橡胶孔隙材料过滤机制与性能研究[J].润滑与密封, 2006(4):109-112. doi: 10.3969/j.issn.0254-0150.2006.04.037

    HOU J F, BAI H B, LIU Y J, et al. Research on filtration mechanism and performance of elastic and porous metal-rubber material[J]. Lubrication Engineering, 2006(4):109-112. doi: 10.3969/j.issn.0254-0150.2006.04.037
    [7] REN Y K, LIU W Y, JIA Y K, et al. Induced-charge electroosmotic trapping of particles[J]. Lab on a Chip, 2015, 15(10):2181-2191. doi: 10.1039/C5LC00058K
    [8] WU Y P, REN Y K, TAO Y, et al. Large-scale single particle and cell trapping based on rotating electric field induced-charge electroosmosis[J]. Analytical Chemistry, 2016, 88(23):11791-11798. doi: 10.1021/acs.analchem.6b03413
    [9] REN Y K, LIU W Y, LIU J W, et al. Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis[J]. Biomicrofluidics, 2016, 10(5):054103. doi: 10.1063/1.4962804
    [10] DEY R, SHAIK V A, CHAKRABORTY D, et al. AC electric field-induced trapping of microparticles in pinched microconfinements[J]. Langmuir, 2015, 31(21):5952-5961. doi: 10.1021/la504795m
    [11] CALERO V, GARCIA-SANCHEZ P, HONRADO C M F, et al. AC electrokinetic biased deterministic lateral displacement for tunable particle separation[J]. Lab on a Chip, 2019, 19(8):1386-1396. doi: 10.1039/C8LC01416G
    [12] URDANETA M, SMELA E. Multiple frequency dielectrophoresis[J]. Electrophoresis, 2007, 28(18):3145-3155. doi: 10.1002/elps.200600786
    [13] AROSIO P, MVLLER T, MAHADEVAN L, et al. Density-gradient-free microfluidic centrifugation for analytical and preparative separation of nanoparticles[J]. Nano Letters, 2014, 14(5):2365-2371. doi: 10.1021/nl404771g
    [14] COLLINS D J, MA Z C, HAN J Y, et al. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves[J]. Lab on a Chip, 2016, 17(1):91-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f1d05131302d8450048343005160ab6f
    [15] IRANMANESH M, HULLIGER J. Magnetic separation:its application in mining, waste purification, medicine, biochemistry and chemistry[J]. Chemical Society Reviews, 2017, 46(19):5925-5934. doi: 10.1039/C7CS00230K
    [16] DASH S, MOHANTY S. Dielectrophoretic separation of micron and submicron particles:a review[J]. Electrophoresis, 2014, 35(18):2656-2672. doi: 10.1002/elps.201400084
    [17] HUNT T P, WESTERVELT R M. Dielectrophoresis tweezers for single cell manipulation[J]. Biomed Microdevices, 2006, 8(3):227-230. doi: 10.1007/s10544-006-8170-z
    [18] SONG H, ROSANO J M, WANG Y, et al. Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis[J]. Lab on a Chip, 2015, 15(5):1320-1328. doi: 10.1039/C4LC01253D
    [19] Han S I, Kim H S, Han A. In-droplet cell concentration using dielectrophoresis[J]. Biosensors and Bioelectronics, 2017, 97:41-45. doi: 10.1016/j.bios.2017.05.036
    [20] TANG S Y, KHOSHMANESH K, SIVAN V, et al. Liquid metal enabled pump[J]. Proceedings of the National Academy of Sciences, 2014, 111(9):3304-3309. doi: 10.1073/pnas.1319878111
    [21] WANG M F, JIN M J, JIN X J, et al. Modeling of movement of liquid metal droplets driven by an electric field[J]. Physical Chemistry Chemical Physics, 2017, 19(28):18505-18513. doi: 10.1039/C7CP02798B
    [22] KHOSHMANESH K, TANG S Y, ZHU J Y, et al. Liquid metal enabled microfluidics[J]. Lab on a Chip, 2017, 17(6):974-993. doi: 10.1039/C7LC00046D
  • 加载中
图(10)
计量
  • 文章访问数:  266
  • HTML全文浏览量:  235
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-12
  • 修回日期:  2020-03-14
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日