留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子层热电堆热流传感器研制及其性能测试

杨凯 朱涛 王雄 陶伯万 朱新新 王辉 杨庆涛

杨凯, 朱涛, 王雄, 等. 原子层热电堆热流传感器研制及其性能测试[J]. 实验流体力学, 2020, 34(6): 86-91. doi: 10.11729/syltlx20190148
引用本文: 杨凯, 朱涛, 王雄, 等. 原子层热电堆热流传感器研制及其性能测试[J]. 实验流体力学, 2020, 34(6): 86-91. doi: 10.11729/syltlx20190148
YANG Kai, ZHU Tao, WANG Xiong, et al. Self-innovated ALTP heat-flux sensor and its performance tests[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 86-91. doi: 10.11729/syltlx20190148
Citation: YANG Kai, ZHU Tao, WANG Xiong, et al. Self-innovated ALTP heat-flux sensor and its performance tests[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 86-91. doi: 10.11729/syltlx20190148

原子层热电堆热流传感器研制及其性能测试

doi: 10.11729/syltlx20190148
基金项目: 

国家重点研发计划 2019YFA0405300

国家自然科学基金 11802321

详细信息
    作者简介:

    杨凯(1986-), 男, 江西新干人, 副研究员。研究方向:热流测试、模态参数辨识、多目标优化。通信地址:四川省绵阳市涪城区二环路南段6号(621000)。E-mail:yg.hit@hotmail.com

    通讯作者:

    杨凯  E-mail: yg.hit@hotmail.com

  • 中图分类号: V441;TP212.11

Self-innovated ALTP heat-flux sensor and its performance tests

  • 摘要: 针对高超声速风洞试验中对高频热流脉动的测试需求,研制了一种基于横向热电效应的原子层热电堆(Atomic Layer Thermopile,ALTP)热流传感器。利用弧光灯热流传感器标定系统对其进行静态标定,获得ALTP热流传感器的灵敏度系数约为8.24 μV/(kW·m-2),优于国外同尺寸敏感元件的ALTP热流传感器6.90 μV/(kW·m-2)的灵敏度系数;利用激波风洞试验,并通过与薄膜热电阻热流传感器对比,初步获得ALTP热流传感器的响应时间上限,响应时间小于0.20 μs。
  • 图  1  ALTP热流传感器的测热原理[24]

    Figure  1.  The measuring principle of the ALTP heat-flux sensor[24]

    图  2  ALTP热流传感器封装效果

    Figure  2.  The packed ALTP heat-flux sensor

    图  3  ALTP热流传感器

    Figure  3.  The ALTP heat-flux sensor

    图  4  ALTP-1热流传感器的一组典型标定数据

    Figure  4.  A typical profile of original calibration data

    图  5  2支ALTP热流传感器的静态标定结果

    Figure  5.  The static calibration results of two ALTP heat-flux sensors

    图  6  风洞试验现场

    Figure  6.  The experimental setup in the shock wind tunnel

    图  7  激波风洞试验原始数据

    Figure  7.  The original experimental data in the shock wind tunnel

    图  8  热流测试结果

    Figure  8.  The measured heat flux density

  • [1] 陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030

    CHEN J Q, TU G H, ZHANG Y F, et al. Hypersonic boundary layer transition:what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030
    [2] 刘向宏, 赖光伟, 吴杰.高超声速边界层转捩实验综述[J].空气动力学学报, 2018, 36(2):196-212. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802005.htm

    LIU X H, LAI G W, WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2):196-212. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802005.htm
    [3] SCHNEIDER S P. Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight:the role of quiet tunnels[J]. Progress in Aerospace Sciences, 2015, 72:17-29 doi: 10.1016/j.paerosci.2014.09.008
    [4] FUJII K. Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2006, 43(4):731-738. doi: 10.2514/1.17860
    [5] 姜楠, 李悦雷.圆柱绕流尾迹对壁湍流相干结构影响的实验研究[J].实验流体力学, 2007, 21(3):8-13. http://www.syltlx.com/CN/abstract/abstract9560.shtml

    JIANG N, LI Y L. Experimental study on coherent structures in wall turbulence interacting with a circular cylinder wake[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3):8-13. http://www.syltlx.com/CN/abstract/abstract9560.shtml
    [6] BERRIDGE D C, CASPER K M, RUFER S J, et al. Measure-ments and computations of second-mode instability waves in three hypersonic wind tunnels[R]. AIAA 2010-5002, 2010.
    [7] ALBA C R, CASPER K M, BERESH S J, et al. Comparison of experimentally measured and computed second-mode distur-bances in hypersonic boundary-layers[R]. AIAA 2010-897, 2010.
    [8] MUNOZ F, HEITMANN D, RADESPIEL R. Instability modes in boundary layers of an inclined cone at Mach 6[J]. Journal of Spacecraft and Rockets, 2014, 51(2):442-454. doi: 10.2514/1.A32564
    [9] 纪锋, 解少飞, 沈清.高超声速1 MHz高频脉动压力测试技术及其应用[J].空气动力学学报, 2016, 34(5):587-591. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201605007.htm

    JI F, XIE S F, SHEN Q. Hypersonic high frequency (1MHz) fluctuation pressure testing technology and application[J]. Acta Aerodynamica Sinica, 2016, 34(5):587-591. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201605007.htm
    [10] HOFFERTH J, SARIC W, KUEHL J, et al. Boundary-layer instability and transition on a flared cone in a Mach 6 quiet wind tunnel[J]. International Journal of Engineering Systems Modelling and Simulation, 2013, 5(1):109-124. http://meetings.aps.org/link/BAPS.2010.DFD.CE.4
    [11] LACHOWICZ J T, CHOKANI N, WILKINSON S P. Boundary-layer stability measurements in a hypersonic quiet tunnel[J]. AIAA Journal, 1996, 34(12):2496-2500. doi: 10.2514/3.13430
    [12] PARZIALE N J, SHEPHERD J E, HORNUNG H G. Diffe-rential interferometric measurement of instability in a hypervelocity boundary layer[J]. AIAA Journal, 2013, 51(3):750-754.
    [13] PARZIALE N J, SHEPHERD J E, HORNUNG H G. Observations of hypervelocity boundary-layer instability[J]. Journal of Fluid Mechanics, 2015, 781:87-112. doi: 10.1017/jfm.2015.489
    [14] WU J, RADESPIEL R. Investigation of instability waves in a Mach 3 laminar boundary layer[J]. AIAA Journal, 2015, 53(12):3712-3725. doi: 10.2514/1.J054040
    [15] 余涛, 张威, 张毅锋, 等.一种非介入式高超声速边界层不稳定波的测量方法[J].实验流体力学, 2019, 33(5):70-75. YU T, http://www.syltlx.com/CN/abstract/abstract11212.shtml

    ZHANG W, ZHANG Y F, et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5):70-75. http://www.syltlx.com/CN/abstract/abstract11212.shtml
    [16] 李悦雷.基于小波分析方法的高超音速尖锥边界层转捩的实验研究[D].天津: 天津大学, 2007.

    LI Y L. Experimental investigations of hypersonic boundary layer transition on a sharp cone based on the method of wavelet analysis[D]. Tianjin: Tianjin University, 2007.
    [17] ROEDIGER T, KNAUSS H, ESTORF M, et al. Hypersonic instability waves measured using fast-response heat-flux gauges[J]. Journal of Spacecraft and Rockets, 2009, 46(2):266-273. doi: 10.2514/1.37026
    [18] 杨庆涛, 曾慧, 王辉, 等.原子层热电堆热流传感器及在气动试验中的应用[J].战术导弹技术, 2015(6):37-41, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201506007.htm

    YANG Q T, ZENG H, WANG H, et al. Atomic layer thermopile heat flux sensor and its application in aerodynamics tests[J]. Tactical Missile Technology, 2015(6):37-41, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201506007.htm
    [19] KEGERISE M A, RUFER S J. Unsteady heat-flux measure-ments of second-mode instability waves in a hypersonic flat-plate boundary layer[J]. Experiments in Fluids, 2016, 57(8):130. doi: 10.1007/s00348-016-2214-9
    [20] 韩健.高超声速尖锥边界层流动稳定性的子波分析与互双谱分析[D].天津: 天津大学, 2010.

    HAN J. Wavelet analysis and crossbispectrum analysis of flow instability for hypersonic sharp cone boundary layer[D]. Tianjing: Tianjing University, 2010.
    [21] 刘初平.气动热与热防护试验热流测量[M].北京:国防工业出版社, 2013.

    LIU C P. Heat flux measurement inaerothermodynamic test[M]. Beijing:National Defense Industry Press, 2013.
    [22] ZHANG P X, HABERMEIER H U. Atomic layer thermopile materials:physics and application[J]. Journal of Nanomaterials, 2008, 2008(S1):329601. doi: 10.1155/2008/329601
    [23] 王勇, 虞澜, 陈思功, 等.原子层热电堆热(光)电探测器的原理及研究现状[J].材料导报, 2011, 25(7):33-37, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201107010.htm

    WANG Y, YU L, CHEN S G, et al. Principle and research statue of atomic layer thermopile thermoelectric or photoelectric detectors[J]. Materials Review, 2011, 25(7):33-37, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201107010.htm
    [24] ROEDIGER T, KNAUSS H, GAISBAIER U, et al. Time-resolved heat transfer measurements on the tip wall of a ribbed channel using a novel heat flux sensor——Part Ⅰ:sensor and benchmarks[J]. Journal of Turbomachinery, 2008, 130(1):011018. http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220081100784106
    [25] KNAUSS H, ROEDIGER T, BOUNTIN D A, et al. Novel sensor for fast heat flux measurements[J]. Journal of Spacecraft and Rockets, 2009, 46(2):255-265. doi: 10.2514/1.32011?mi=8f0xx2&af=R&contents=articlesChapters&countTerms=true&field1=Contrib&target=default&text1=Boris%2C+S
    [26] 杨凯, 杨庆涛, 朱新新, 等.一种薄膜热电堆热流传感器灵敏度系数的实验研究[J].宇航计测技术, 2018, 38(3):67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-YHJJ201803011.htm

    YANG K, YANG Q T, ZHU X X, et al. Calibration tests on a new thin-film thermopile heat-flux sensor[J]. Journal of Astronautic Metrology and Measurement, 2018, 38(3):67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-YHJJ201803011.htm
    [27] YANG K, YANG Q T, ZHU X X, et al. A molecular dynamics simulation on the static calibration test of a revised thin-film thermopile heat-flux sensor[J]. Measurement, 2020, 150(1):107039. http://www.sciencedirect.com/science/article/pii/S0263224119309054
    [28] 杨凯, 朱涛, 王雄, 等.一种原子层热电堆热流传感器的封装结构: 中国, ZL20192 2230062.2[P]. 2020-05-26.

    YANG K, ZHU T, WANG X, et al. The packed structure for Atomic Layer Thermopile heat-flux sensor: China, ZL20192 2230062.2[P]. 2020-05-26.
    [29] WANG H, YANG Q T, ZHU X X, et al. Inverse estimation of heat flux using linear artificial neural networks[J]. International Journal of Thermal Sciences, 2018, 132:478-485. http://www.sciencedirect.com/science/article/pii/S1290072917317763
  • 加载中
图(8)
计量
  • 文章访问数:  587
  • HTML全文浏览量:  179
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-07
  • 修回日期:  2019-12-16
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日