留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛细流动聚焦的实验方法及过程控制

穆恺 司廷

穆恺, 司廷. 毛细流动聚焦的实验方法及过程控制[J]. 实验流体力学, 2020, 34(2): 46-56. doi: 10.11729/syltlx20190146
引用本文: 穆恺, 司廷. 毛细流动聚焦的实验方法及过程控制[J]. 实验流体力学, 2020, 34(2): 46-56. doi: 10.11729/syltlx20190146
MU Kai, SI Ting. Experimental method and process control of capillary flow focusing[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 46-56. doi: 10.11729/syltlx20190146
Citation: MU Kai, SI Ting. Experimental method and process control of capillary flow focusing[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 46-56. doi: 10.11729/syltlx20190146

毛细流动聚焦的实验方法及过程控制

doi: 10.11729/syltlx20190146
基金项目: 

国家自然科学基金 11902318

国家自然科学基金 11722222

深圳市科技计划技术攻关项目 JSGG20170412115256747

中央高校基本科研业务费专项资金 WK2090050047

详细信息
    作者简介:

    穆恺(1989-), 男, 四川成都人, 博士。研究方向:微纳尺度流动, 界面不稳定性。通信地址:安徽省合肥市蜀山区黄山路443号中国科技大学近代力学系(230027)。E-mail:mukai@ustc.edu.cn

    通讯作者:

    司廷, E-mail: tsi@ustc.edu.cn

  • 中图分类号: O358;O359

Experimental method and process control of capillary flow focusing

  • 摘要: 作为一种基于毛细流动制备微纳尺度液滴的技术,毛细流动聚焦(Capillary flow focusing)在工程领域具有重要应用。回顾了基于吹气式和吸气式核心装置的毛细流动聚焦实验方法,展示了完整的测试平台,介绍了施加外部激励控制流动聚焦射流破碎的实验方法。同时,给出了同轴界面的拍摄方法,可获得清晰的内外层流体界面图像。在对流体锥形收缩阶段的研究中,探讨了几何参数与流动控制参数对流体锥形的形态与稳定性的影响。在稳定锥形下,研究了流动控制参数对液体射流直径、扰动波长及复合射流界面耦合的影响,并基于光的折射定律,对复合射流外层界面透镜效应所导致的内界面失真进行了修正。在对激励作用下射流破碎的研究中,考察了射流长度随振幅的变化,建立了尺度率关系,探讨了频率对生成液滴的单分散性及粒径的影响规律,为在实际应用中可控制备单分散性微液滴提供了理论与技术支持。
  • 图  1  流动聚焦核心装置示意图及实物图

    Figure  1.  Sketches and real pictures of the devices in flow focusing experiments

    图  2  流动聚焦实验平台示意图

    Figure  2.  Sketch of the flow focusing experimental platform

    图  3  外部激励控制下的流动聚焦核心装置示意图与实验装置图[51]

    Figure  3.  Sketches of the flow focusing upon external actuation and the core device[51]

    图  4  不同照明方式下拍摄的同轴流体锥形

    Figure  4.  The images of coaxial liquid cone under different illumination conditions

    图  5  结构参数对同轴流体锥形形态及稳定性的影响(流动控制参数:Qin=1mL/h, Qout=60 mL/h, Δpg=60 kPa, U=1 kV)

    Figure  5.  Effect of geometry parameters on the profiles and instabilities of the coaxial liquid cone (the flow parameters are fixed at Qin=1 mL/h, Qout=60 mL/h, Δpg=60 kPa and U=1 kV)

    图  6  流动控制参数对同轴流体锥形形态及稳定性的影响

    Figure  6.  Effect of flow parameters on the profiles and instabilities of the coaxial liquid cone

    图  7  带电单轴射流在不同气体压差Δpg下的破碎形态[54]

    Figure  7.  Breakup of the charged liquid jet as Δpg changes[54]

    图  8  射流直径随流量Q及驱动压差Δpg的变化规律[54]

    Figure  8.  The effect of Q and Δpg on the jet diameters[54]

    图  9  Δpg对界面扰动波长λ的影响

    Figure  9.  The effect of Δpg on the perturbation wavelength λ of the jet interface

    图  10  同轴射流在不同rQ下破碎时的界面耦合规律

    Figure  10.  The interface coupling of the coaxial liquid jets under different rQ

    图  11  平行光通过射流界面后的折射规律

    Figure  11.  Refraction of the parallel light after crossing the jet interfaces

    图  12  不同激励电压U时的射流破碎图像[51]

    Figure  12.  Typical photographs of the liquid jet with an increase in the value of U[51]

    图  13  射流破碎长度Lb随上游锥形脉动振幅η的变化规律[51]

    Figure  13.  The jet breakup length (Lb) vs. vibration amplitude (η) of the cone upstream[51]

    图  14  激励频率fe变化时液滴粒径统计[51]

    Figure  14.  The variation of droplet size vs. excitation frequency fe[51]

    图  15  不同频率下液滴粒径的标准差[51]

    Figure  15.  The normalized standard deviation of collected droplets[51]

  • [1] GAÑÁN-CALVO A M, MONTANERO J M, MARTÍN-BANDERAS L, et al. Building functional materials for health care and pharmacy from microfluidic principles and flow focusing[J]. Advanced Drug Delivery Reviews, 2013, 65(11-12):1447-1469. doi: 10.1016/j.addr.2013.08.003
    [2] BARRERO A, LOSCERTALES I G. Micro-and nanoparticles via capillary flows[J]. Annual Review of Fluid Mechanics, 2007, 39:89-106. doi: 10.1146/annurev.fluid.39.050905.110245
    [3] MONTANERO J M, GAÑÁN-CALVO A M. Dripping, jetting and tip streaming[R]. arXiv: 1909.02073.2019.
    [4] 司廷, 李广滨, 尹协振.流动聚焦及射流不稳定性[J].力学进展, 2017, 47:201706. doi: 10.6052/1000-0992-16-026

    SI T, LI G B, YIN X Z. Flow focusing and jet instability[J]. Advances in Mechanics, 2017, 47:201706. doi: 10.6052/1000-0992-16-026
    [5] 司廷.流动聚焦的实验和理论研究[D].合肥: 中国科学技术大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10358-2009110996.htm
    [6] 李广滨.复合流动聚焦的实验和理论研究[D].合肥: 中国科学技术大学, 2016. http://d.wanfangdata.com.cn/Thesis/Y3021236
    [7] 穆恺.液驱流动聚焦中界面失稳及耦合研究[D].合肥: 中国科学技术大学, 2018. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFD&filename=1018096839.nh
    [8] SI T, FENG H X, LUO X S, et al. Formation of steady compound cone-jet modes and multilayered droplets in a tri-axial capillary flow focusing device[J]. Microfluid and Nanofluidics, 2015, 18:967-977. doi: 10.1007/s10404-014-1486-8
    [9] SI T, YIN C S, GAO P, et al. Steady cone-jet mode in compound-fluidic electro-flow focusing for fabricating multicompart-ment microcapsules[J]. Applied Physics Letters, 2016, 108:021601. doi: 10.1063/1.4939632
    [10] WU Q, YANG C Y, LIU G L, et al. Multiplex coaxial flow focusing for producing multicompartment janus microcapsules with tunable material compositions and structural characteristics[J]. Lab on a Chip, 2017, 17(18):3168-3175. doi: 10.1039/C7LC00769H
    [11] WU Q, YANG C Y, YANG J X et al. Photopolymerization of complex emulsions with irregular shapes fabricated by multiplex coaxial flow focusing[J]. Applied Physics Letters, 2018, 112(7):071601. doi: 10.1063/1.5018207
    [12] GAÑÁN-CALVO A M. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams[J]. Physical Review Letters, 1998, 80(2):285. doi: 10.1103/PhysRevLett.80.285
    [13] ROSELL-LLOMPART J, GAÑÁN-CALVO A M. Turbulence in pneumatic flow focusing and flow blurring regimes[J]. Physical Review E, 2008, 77(2):036321. https://ui.adsabs.harvard.edu/abs/2008PhRvE..77c6321R/abstract
    [14] HERRADA M A, GAÑÁN-CALVO A M, OJEDA-MONGE A, et al. Liquid flow focused by a gas:jetting, dripping, and recirculation[J]. Physical Review E, 2008, 78(2):036323. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0804.3138
    [15] GAÑÁN-CALVO A M, BARRERO A. A novel pneumatic technique to generate steady capillary microjets[J]. Journal of Aerosol Science, 1999, 30(1):117-125. doi: 10.1016/S0021-8502(98)00029-9
    [16] SI T, LI F, YIN X Y, et al. Modes in flow focusing and instability of coaxial liquid-gas jets[J]. Journal of Fluid Mechanics, 2009, 629:1-23. doi: 10.1017/S0022112009006211
    [17] SI T, LI F, YIN X Y, et al. Spatial instability of coflowing liquid-gas jets in capillary flow focusing[J]. Physics of Fluids, 2010, 22(11):112105. doi: 10.1063/1.3490066
    [18] VEGA E J, MONTANERO J M, HERRADA M A, et al. Global and local instability of flow focusing:The influence of the geometry[J]. Physics of Fluids, 2010, 22:064105. doi: 10.1063/1.3450321
    [19] GAÑÁN-CALVO A M, MONTANERO J M. Revision of capillary cone-jet physics:electrospray and flow focusing[J]. Physical Review E, 2009, 79(2):066305. https://www.ncbi.nlm.nih.gov/pubmed/19658592
    [20] GAÑÁN-CALVO A M, GORDILLO J M. Perfectly monodisperse microbubbling by capillary flow focusing[J]. Physical Review Letters, 2002, 87(1):274501. doi: 10.1103-PhysRevLett.87.1/
    [21] GAÑÁN-CALVO A M. Perfectly monodisperse microbubbling by capillary flow focusing:An alternate physical description and universal scaling[J]. Physical Review E, 2004, 69(2):027301. doi: 10.1103/PhysRevE.69.027301
    [22] GAÑÁN-CALVO A M, RIESCO-CHUECA P. Jetting-dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid:the minimum flow rate in flow focusing[J]. Journal of Fluid Mechanics, 2006, 553:75-84. doi: 10.1017/S0022112006009013
    [23] MU K, DING H, SI T. Instability analysis of the cone-jet flow in liquid-driven flow focusing[J]. Microfluidics and Nanofluidics, 2018, 22(12):138. doi: 10.1007/s10404-018-2158-x
    [24] MU K, SI T, DING H. Nonlinear dynamics and manipulation of dripping in capillary flow focusing[J]. Science China Physics, Mechanics and Astronomy, 2019, 62(12):124713. doi: 10.1007/s11433-019-9444-8
    [25] ANNA S L, BONTOUX N, STONE H A. Formation of diepersions using "flow-focusing" in microchannels[J]. Applied Physics Letters, 2003, 82(3):364-366. doi: 10.1063/1.1537519
    [26] 刘赵淼, 杨洋.几何构型对流动聚焦生成微液滴的影响[J].力学学报, 2016, 48(4):867-876. http://d.old.wanfangdata.com.cn/Periodical/lxxb201604013

    LIU Z M, YANG Y. Influence of geometry configurations on the microdroplets in flow focusing microfluidics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):867-876. http://d.old.wanfangdata.com.cn/Periodical/lxxb201604013
    [27] ZHU P A, KONG T T, KANG Z X, et al. Tip-multi-breaking in capillary microfluidic devices[J]. Scientific Reports, 2015, 5:11102. doi: 10.1038/srep11102
    [28] CORDERO M L, GALLAIRE F, BAROUD C N. Quantitative analysis of the dripping and jetting regimes in co-flowing capillary jets[J]. Physics of Fluids, 2010, 23(9):094111. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1011.2428
    [29] 李战华, 郑旭.微纳米尺度流动实验研究的问题与进展[J].实验流体力学. 2014, 28(3):1-11. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10728.shtml

    LI Z H, ZHENG X. The problems and progress in the experimental study of micro/nano-scaleflow[J]. Journal of Experiments in Fluid Mechnics, 2014, 28(3):1-11. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10728.shtml
    [30] ZHU P A, WANG L Q. Passive and active droplet generation with microfluidics:a review[J]. Lab on a Chip, 2016, 17(1):34-75. https://www.ncbi.nlm.nih.gov/pubmed/27841886
    [31] ANNA S L. Droplets and bubbles in microfluidic devices[J]. Annual Review of Fluid Mechanics, 2016, 48(1):285-309. doi: 10.1146/annurev-fluid-122414-034425
    [32] 陈晓东, 胡国庆.微流控器件中的多相流动[J].力学进展, 2015, 45:201503. doi: 10.6052/1000-0992-14-063

    CHEN X D, HU G Q. Multiphase flow in microfluidic devices[J]. Advances in Mechanics, 2015, 45:201503. doi: 10.6052/1000-0992-14-063
    [33] 刘赵淼, 杨洋, 杜宇, 等.微流控液滴技术及其应用的研究进展[J].分析化学, 2017, 45(2):282-296. http://d.old.wanfangdata.com.cn/Periodical/fxhx201702020

    LIU Z M, YANG Y, DU Y, et al. Advances in droplet-based microfluidics technology and its applications[J]. Chinese Journal of Analytical Chemistry, 2017, 45(2):282-296. http://d.old.wanfangdata.com.cn/Periodical/fxhx201702020
    [34] 杨超宇, 吴强, 徐晓嵘, 等.制备复合液滴的微尺度流动方法[J].气体物理, 2018, 3(4):13-23. http://d.old.wanfangdata.com.cn/Periodical/qtwl201804002

    YANG C Y, WU Q, XU R X, et al. Advacens on microfluidic methods for producing compound droplets[J]. Physics of gases, 2018, 3(4):13-23. http://d.old.wanfangdata.com.cn/Periodical/qtwl201804002
    [35] MARTÍN-BANDERAS L, FLORES-MOSQUERA M, RIESCO-CHUECA P. Flow focusing:a versatile technology to produce size-controlled and specific morphology microparticles[J]. Small, 2005, 1(7):688-692. doi: 10.1002/smll.200500087
    [36] MARTIN-BANDERAS L, Rodríguez-Gil A, CEBOLLA A, et al. Towards high-throughput production of uniformly encoded microparticles[J]. Advanced Materials, 2006, 18(5):559-564. doi: 10.1002/adma.200501976
    [37] GAÑÁN-CALVO A M, GONZÁLEZ-PRIETO R, RIESCO-CHUECA P, et al. Focusing capillary jets close to the continuum limit[J]. Nature Physics, 2007, 3(10):737-742. doi: 10.1038/nphys710
    [38] HERRADA M A, MONTANERO J M, FERRERA C, et al. Analysis of the dripping-jetting transition in compound capillary jets[J]. Journal of Fluid Mechanics, 2010, 649:523-536. doi: 10.1017/S0022112010000443
    [39] MU K, DING H, SI T. Experimental and numerical investigations on interface coupling of coaxial liquid jets in co-flow-focusing[J]. Physics of Fluid, 2020, 32(4):042103. doi: 10.1063/5.0002102
    [40] UTADA A S, LORENCEAU E, LINK D R, et al. Monodisperse double emulsions generated from a microcapillary device[J]. Science, 2005, 308(5721):537-541. doi: 10.1126/science.1109164
    [41] NIE Z H, XU S Q, SEO M S, et al. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors[J]. Journal of the American Chemical Society, 2005, 127(22):8058-8063. doi: 10.1021/ja042494w
    [42] PANG Y, DU Y, WANG J, et al. Generation of single/double Janus emulsion droplets in co-flowing microtube[J]. International Journal of Multiphase Flow, 2019, 113:199-207. doi: 10.1016/j.ijmultiphaseflow.2019.01.011
    [43] SI T, LI G B, WU Q, et al. Optical droplet vaporization of nanoparticle-loaded stimuli-responsive microbubbles[J]. Applied Physics Letters, 2016, 108(12):111109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8525e16bc0e016d8b7cf2cda3293e538
    [44] ZHU Z Q, SI T, XU R X. Microencapsulation of indocyanine green for potential applications in image-guided drug delivery[J]. Lab on a Chip, 2015, 15(3):646-649. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91b4155a096314815bbd6abe05020d5a
    [45] XU J S, YUAN S, TIAN J L, et al. Ultrasound mediated delivery of oxygen and lll12 loaded stimuli responsive microdroplets for the treatment of hypoxic cancer cells[J]. Scientific Reports, 2017, 7:44908. doi: 10.1038/srep44908
    [46] ZHU Z Q, WU Q, HAN S Y, et al. Rapid production of single-and multi-compartment polymeric microcapsules in a facile 3D microfluidic process for magnetic separation and synergistic delivery[J]. Sensor and Actuator B:Chemical, 2018, 275:190-198. doi: 10.1016/j.snb.2018.08.044
    [47] ZHU P A, TANG X, WANG L Q. Droplet generation in co-flow microfluidic channels with vibration[J]. Microfluidics and Nanofluidics, 2016, 20(3):47. doi: 10.1007/s10404-016-1717-2
    [48] SAURET A, SHUM H C. Forced generation of simple and double emulsions in all-aqueous systems[J]. Applied Physics Letters, 2012, 100(15):154106. doi: 10.1063/1.3702434
    [49] SAURET A, SPANDAGOS C, SHUM H C. Fluctuation-induced dynamics of multiphase liquid jets with ultra-low interfacial tension[J]. Lab on a Chip, 2012, 12(18):3380-3386. doi: 10.1039/c2lc40524e
    [50] SHUM H C, VARNELL J, WEITZ D A. Microfluidic fabrication of water-in-water (w/w) jets and emulsions[J]. Biomicrofluidic, 2012, 6(1):012808. doi: 10.1063/1.3670365
    [51] YANG C Y, QIAO R, MU K, et al. Manipulation of jet breakup length and droplet size in axisymmetric flow focusing upon actuation[J]. Physics of Fluids, 2019, 31(9):091702. doi: 10.1063/1.5122761
    [52] MU K, SI T, LI E Q, et al. Numerical study on droplet generation in axisymmetric flow focusing upon actuation[J]. Physics of Fluids, 2018, 30:012111. doi: 10.1063/1.5009601
    [53] MONTANERO J M, REBOLLO-MUÑOZ N, HERRADA M A, et al. Global stability of the focusing effect of fluid jet flows[J]. Physical Review E, 2011, 83(2):036309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5253e594787b9ec7d2554459d280829e
    [54] LI G B, LUO X S, SI T, et al. Temporal instability of coflowing liquid-gas jets under an electric field[J]. Physics of Fluids, 2014, 26(5):054101. doi: 10.1063/1.4875109
    [55] GAÑÁN-CALVO A M, LÓPEZ-HERRERA J M, RIESCO-CHUECA P. The combination of electrospray and flow focusing[J]. Journal of Fluid Mechanics, 2006, 566:421-445. doi: 10.1017/S0022112006002102
    [56] EGGERS J, VILLERMAUX E. Physics of liquid jets[J]. Reports on Progress in Physics, 2008, 71(3):036601. doi: 10.1088/0034-4885/71/3/036601
    [57] LIN S P, REITZ R D. Drop and spray formation from a liquid jet[J]. Annual Review of Fluid Mechanics, 1998, 30(1):85-105. doi: 10.1146/annurev.fluid.30.1.85
    [58] LIN S P. Breakup of liquid sheets and jets[M]. Cambridge:Cambridge University Press, 2003.
    [59] LASHERAS J C, HOPFINGER E J. Liquid jet instability and atomization in a coaxial gas stream[J]. Annual Review of Fluid Mechanics, 2000, 32:275-308. doi: 10.1146/annurev.fluid.32.1.275
    [60] 李帅兵, 司廷.射流破碎的不稳定性分析方法[J].空气动力学学报, 2019, 37(3):356-372. doi: 10.7638/kqdlxxb-2018.0153

    LI S B, SI T. Advances on linear instability analysis method of jet breakup[J]. Acta Aerodynamica Sinica, 2019, 37(3):356-372. doi: 10.7638/kqdlxxb-2018.0153
    [61] 司廷, 李广滨, 罗喜胜, 等.同轴流动聚焦中射流不稳定性研究[J].气体物理, 2017, 2(1):30-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qtwl201701004

    SI T, LI G B, LUO X S, et al. Theoretical investigation on flow instability of liquid jets in co-flow focusing[J]. Physics of Gases, 2017, 2(1):30-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qtwl201701004
  • 加载中
图(15)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  112
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-31
  • 修回日期:  2019-12-10
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日