留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单颗粒追踪法研究聚氧化乙烯溶液的微流变特性

周思佳 王昊利 包福兵

周思佳, 王昊利, 包福兵. 基于单颗粒追踪法研究聚氧化乙烯溶液的微流变特性[J]. 实验流体力学, 2020, 34(2): 89-98. doi: 10.11729/syltlx20190143
引用本文: 周思佳, 王昊利, 包福兵. 基于单颗粒追踪法研究聚氧化乙烯溶液的微流变特性[J]. 实验流体力学, 2020, 34(2): 89-98. doi: 10.11729/syltlx20190143
ZHOU Sijia, WANG Haoli, BAO Fubing. Experimental study on microrheological properties of polyethylene oxide solution based on single particle tracking method[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 89-98. doi: 10.11729/syltlx20190143
Citation: ZHOU Sijia, WANG Haoli, BAO Fubing. Experimental study on microrheological properties of polyethylene oxide solution based on single particle tracking method[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 89-98. doi: 10.11729/syltlx20190143

基于单颗粒追踪法研究聚氧化乙烯溶液的微流变特性

doi: 10.11729/syltlx20190143
基金项目: 

国家自然科学基金 11872027

国家自然科学基金 11472261

详细信息
    作者简介:

    周思佳(1993-), 女, 河南许昌人, 硕士研究生。研究方向:被动微流变学。通信地址:浙江省杭州市下沙高教园区学源街258号(310000)。E-mail:zhousj0051@163.com

    通讯作者:

    王昊利, E-mail: whl@cjlu.edu.cn

  • 中图分类号: O37

Experimental study on microrheological properties of polyethylene oxide solution based on single particle tracking method

  • 摘要: 基于单颗粒追踪方法研究了不同温度与浓度下聚氧化乙烯(PEO)溶液的微观流变特性。根据广义Stokes-Einstein关系及复杂流体黏弹性理论,利用颗粒追踪技术,对浓度为0.4 wt%~1.0 wt%的PEO溶液在25℃、35℃和45℃时的微观流变特性进行了测量和分析。研究结果表明,随着被测溶液浓度的增加,探针颗粒的布朗运动受限趋势增大,其中浓度为1.0 wt%的PEO溶液在25℃时布朗运动受限最为显著。黏弹特性模量求解结果表明:在实验条件下,PEO溶液的黏性模量(G"(ω))占主导而弹性模量(G'(ω))表现较弱;在相同温度下,黏弹性模量随着溶液浓度上升而增大;随着温度的升高,溶液弹性模量和黏性模量都呈现减小趋势,且弹性模量减小速率大于黏性模量减小速率。均方位移标准差分析表明,基于单颗粒追踪的微流变测量误差随追踪时间的增加呈增大趋势。
  • 图  1  颗粒在高分子溶液中受链状分子网络限制的示意图

    Figure  1.  Schematic diagram of the limitation of a macromolecular chain network on particles in a polymer solution

    图  2  颗粒追踪实验平台示意图

    Figure  2.  Schematic diagram of particle tracking experimental platform

    图  3  温控装置硬件图

    Figure  3.  Diagram of temperature control device

    图  4  探针颗粒的原始图像及图像处理结果

    Figure  4.  Original image and image processing results of probe particles

    图  5  去离子水中MSD-t曲线及拟合直线图

    Figure  5.  MSD-t curve and fitting straight line in deioned water

    图  6  聚氧化乙烯及其水溶液

    Figure  6.  Polyethylene oxide and its aqueous solution

    图  7  布朗运动轨迹图

    Figure  7.  Brownian motion trajectory

    图  8  相同浓度不同温度下MSD-t曲线

    Figure  8.  MSD-t curves at the same concentration and different temperatures

    图  9  相同温度不同浓度下的MSD-t曲线

    Figure  9.  MSD-t curves at the same temperature and different concentrations

    图  10  不同工况下的PEO溶液黏弹性模量曲线

    Figure  10.  Viscoelastic modulus curves of PEO solutions at different conditions

    图  11  0.8 wt%PEO溶液MSD-t误差带曲线

    Figure  11.  MSD-t error band curves for 0.8 wt% PEO solution

    图  12  不同工况下的PEO溶液MSD标准差(σ-t)曲线

    Figure  12.  MSD standard deviation curves (σ-t) of PEO solution under different conditions

    表  1  去离子水扩散系数的理论与实验数据(20 ℃)

    Table  1.   Theoretical and experimental diffusion coefficients of deioned water (20 ℃)

    ηth/(mPa·s)Dth/ (μm2·s-1)Dex/ (μm2·s-1)ε
    1.0020.85270.88133.24%
    下载: 导出CSV

    表  2  聚氧化乙烯特性参数表

    Table  2.   Characteristic parameters of PEO

    分子式软化点熔点密度
    (at 25 ℃)
    水溶液PH值
    (0.5 wt%)
    CH2CH2O(65~67) ℃(87~140) ℃0.93 g/mL中性
    下载: 导出CSV

    表  3  0.4 wt%、0.6 wt%、0.8 wt%和1.0 wt%的PEO溶液在25 ℃、35 ℃和45 ℃时的均方位移均值, k=400(单位:μm2)

    Table  3.   Average of MSD of 0.4 wt%, 0.6 wt%, 0.8 wt% and 1.0 wt% PEO solution at 25 ℃, 35 ℃ and 45 ℃, k=400 (unit: μm2)

    25 ℃35 ℃45 ℃
    0.4 wt%25.1835.2957.10
    0.6 wt%10.9526.1941.30
    0.8 wt%9.4621.2031.69
    1.0 wt%2.178.7621.23
    下载: 导出CSV

    表  4  浓度为0.4 wt%、0.6 wt%、0.8 wt%和1.0 wt%的PEO溶液在25 ℃、35 ℃和45 ℃时的弹性模量最大值(单位:Pa)

    Table  4.   The maximum elastic modulus of PEO solution with concentration of 0.4 wt%, 0.6 wt%, 0.8 wt% and 1.0 wt% at 25 ℃, 35 ℃ and 45 ℃ (unit: Pa)

    25 ℃35 ℃45 ℃
    0.4 wt%0.01350.00490.0035
    0.6 wt%0.04550.00960.0321
    0.8 wt%0.11360.02390.0172
    1.0 wt%0.15820.17490.0746
    下载: 导出CSV

    表  5  浓度为0.4 wt%、0.6 wt%、0.8 wt%和1.0 wt%的PEO溶液在25 ℃、35 ℃和45 ℃时的黏性模量最大值(单位:Pa)

    Table  5.   The maximum viscosity modulus of PEO solution with concentration of 0.4 wt%, 0.6 wt%, 0.8 wt%and 1.0 wt% at 25 ℃, 35 ℃ and 45 ℃ (unit: Pa)

    25 ℃35 ℃45 ℃
    0.4 wt%0.10110.08040.0648
    0.6 wt%0.21340.16110.1376
    0.8 wt%0.35850.28490.1794
    1.0 wt%0.54990.33650.3055
    下载: 导出CSV
  • [1] FURST E M, SQUIRES T M. Microrheology[M]. Oxford:Oxford University Press, 2017.
    [2] 王振东, 姜楠.软物质漫谈[J].力学与实践, 2014, 36(2):249-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxysj201402025
    [3] MACKINTOSH F C, SCHMIDT C F. Microrheology[J]. Current Opinion in Colloid & Interface Science, 1999, 4(4):300-307. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023307599/
    [4] WAIGH T A. Microrheology of complex fluids[J]. Reports on Progress in Physics, 2005, 68(3):685-742. doi: 10.1088/0034-4885/68/3/R04
    [5] MANSEL B W, KEEN S, PATTY P J, et al. A practical review of microrheological techniques[M]//Rheology-New Concepts, Applications and Methods. Croatia:Intech, 2013.
    [6] YANG N, LYU R H, JIA J J, et al. Application of microrheology in food science[J]. Annual Review of Food Science and Technology, 2017, 8(1):493-521. doi: 10.1146/annurev-food-030216-025859
    [7] MASON T G, WEITZ D A. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids[J]. Physical Review Letters, 1995, 74(7):1250-1253. doi: 10.1103/PhysRevLett.74.1250
    [8] GITTES F, SCHNURR B, OLMSTED P D, et al. Microscopic viscoelasticity:shear moduli of soft materials determined from thermal fluctuations[J]. Physical Review Letters, 1997, 79(17):3286-3289. doi: 10.1103/PhysRevLett.79.3286
    [9] KIMURA Y. Microrheology of soft matter[J]. Journal of the Physical Society of Japan, 2009, 78(4):1005. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1312.4369
    [10] LARSEN T H, FURST E M. Microrheology of the liquid-solid transition during gelation[J]. Physical Review Letters, 2008, 100(14):146001. doi: 10.1103/PhysRevLett.100.146001
    [11] GAMBINI C, ABOU B, PONTON A, et al. Micro-and macrorheology of jellyfish extracellular matrix[J]. Biophysical Journal, 2012, 102(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9c6745797409b769694b6a845f03ed5
    [12] ABDALA A A, AMIN S, VAN ZANTEN J H, et al. Tracer microrheology study of a hydrophobically modified comblike associative polymer[J]. Langmuir, 2015, 31(13):3944-3951. doi: 10.1021/la504904n
    [13] XU J Y, CHANG T S, INGLETT G E, et al. Micro-heterogeneity and micro-rheological properties of high-viscosity oat β-glucansolutions[J]. Food Chemistry, 2007, 103(4):1192-1198. doi: 10.1016/j.foodchem.2006.10.024
    [14] COHEN I, WEIHS D. Rheology and microrheology of natural and reduced-calorie Israeli honeys as a model for high-viscosity Newtonian liquids[J]. Journal of Food Engineering, 2010, 100(2):366-371. doi: 10.1016/j.jfoodeng.2010.04.023
    [15] MOSCHAKIS T, MURRAY B S, DICKINSON E. Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide[J]. Langmuir, 2006, 22(10):4710-4719. doi: 10.1021/la0533258
    [16] MOSCHAKIS T, MURRAY B S, DICKINSON E. On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology[J]. Journal of Colloid and Interface Science, 2010, 345(2):278-285. doi: 10.1016/j.jcis.2010.02.005
    [17] MOSCHAKIS T, LAZARIDOU A, BILIADERIS C G. Using particle tracking to probe the local dynamics of barley β-glucan solutions upon gelation[J]. Journal of Colloid and Interface Science, 2012, 375(1):50-59. doi: 10.1016/j.jcis.2012.02.048
    [18] MOSCHAKIS T, LAZARIDOU A, BILIADERIS C G. A micro-and macro-scale approach to probe the dynamics of sol-gel transition in cereal β-glucan solutions varying in molecular characteristics[J]. Food Hydrocolloids, 2014, 42(1):81-91. https://www.researchgate.net/publication/267047027_A_micro-_and_macro-scale_approach_to_probe_the_dynamics_of_sol-gel_transition_in_cereal_b-glucan_solutions_varying_in_molecular_characteristics
    [19] NATH P, MANGAL R, KOHLE F, et al. Dynamics of nanoparticles in entangled polymer solutions[J]. Langmuir, 2018, 34(1):241-249. doi: 10.1021/acs.langmuir.7b03418
    [20] VAN ZANTEN J H, AMIN S, ABDALA A A. Brownian motion of colloidal spheres in aqueous PEO solutions[J]. Macromolecules, 2004, 37(10):3874-3880. doi: 10.1021/ma035250p
    [21] KUBO R. The fluctutation-dissipation theorem[J]. Reports on Progress in Physics, 1966, 29:255-284. doi: 10.1088/0034-4885/29/1/306
    [22] ZWANZIG R, BIXON M. Hydrodynamic theory of the velocity correlation function[J]. Physical Review A, 1970, 2(5):2005-2012. doi: 10.1103/PhysRevA.2.2005
    [23] DOIM. Soft matter physics[M]. New York:Oxford University Press, 2013.
    [24] MASON T G, GANESAN K, VAN ZANTEN J H, et al. Particle tracking microrheology of complex fluids[J]. Physical Review Letters, 1997, 79(17):3282-3285. doi: 10.1103/PhysRevLett.79.3282
    [25] MASON T G, GANG H, WEITZ D A. Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids[J]. Journal of the Optical Society of America A:Optics Image Science and Vision, 1997, 14(1):139-149. doi: 10.1364/JOSAA.14.000139
    [26] 崔凤霞, 郭春梅, 王开林, 等.聚氧化乙烯(PEO)的合成及应用[J].精细石油化工, 1999, 16(6):41-44. http://d.old.wanfangdata.com.cn/Periodical/shjsyyy200802005
    [27] MASON T G. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation[J]. Rheologica Acta, 2000, 39(4):371-378. doi: 10.1007/s003970000094
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  94
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-30
  • 修回日期:  2020-01-21
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日