留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微通道中液滴和粒子的运动特性研究

王翔 逄燕 申峰 刘赵淼

王翔, 逄燕, 申峰, 等. 微通道中液滴和粒子的运动特性研究[J]. 实验流体力学, 2020, 34(2): 25-38. doi: 10.11729/syltlx20190137
引用本文: 王翔, 逄燕, 申峰, 等. 微通道中液滴和粒子的运动特性研究[J]. 实验流体力学, 2020, 34(2): 25-38. doi: 10.11729/syltlx20190137
WANG Xiang, PANG Yan, SHEN Feng, et al. Study on behaviors of droplets and particles within microchannels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 25-38. doi: 10.11729/syltlx20190137
Citation: WANG Xiang, PANG Yan, SHEN Feng, et al. Study on behaviors of droplets and particles within microchannels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 25-38. doi: 10.11729/syltlx20190137

微通道中液滴和粒子的运动特性研究

doi: 10.11729/syltlx20190137
基金项目: 

国家自然科学基金 11572013

国家自然科学基金 11872083

国家自然科学基金 11702007

详细信息
    作者简介:

    王翔(1992-), 男, 山西运城人, 博士研究生。研究方向:微尺度流体力学。通信地址:北京市朝阳区平乐园100号北京工业大学机械工程与应用电子技术学院(100124)。E-mail:wangxiang@bjut.edu.cn

    通讯作者:

    刘赵淼, E-mail: lzm@bjut.edu.cn

  • 中图分类号: O359

Study on behaviors of droplets and particles within microchannels

  • 摘要: 微流控技术的快速发展反映了新型检测器件对微型化和集成化的要求,以及当前科学研究和工程应用逐步向多学科交叉领域过渡的趋势。其中,液滴和粒子是微流控技术中两种重要的操控对象。液滴和粒子的微尺度流动通常处于层流范围,然而尺度效应和界面效应将非线性因素引入流动,且受到通道结构、流动条件等多个控制参数的耦合影响,使得微尺度系统表现出多种复杂的流动现象。因此,从流体动力学的机理研究出发揭示微尺度流动的物理机制至关重要。本文综述了课题组近年来关于微通道中液滴和粒子运动的研究,分析了液滴/粒子特征参数的变化规律,界定了不同流动模式的分布状况及临界条件,明确了主导流动的关键参数并建立了相应的受力模型,以期探寻不同行为的操控方法。本文工作可为微尺度下复杂流动理论体系的完善及相关工程应用提供参考。
  • 图  1  微通道分岔结构示意图[22]

    Figure  1.  Schematic diagrams of the microchannel bifurcation[22]

    图  2  分岔处的液滴运动行为[21]

    Figure  2.  Droplet behaviors at the bifurcation[21]

    图  3  堵塞分裂模式下的颈部宽度变化规律[22]

    Figure  3.  Variations of neck thickness for breakup with obstruction[22]

    图  4  微通道交汇结构示意图[36]

    Figure  4.  Schematic diagram of the microchannel intersection[36]

    图  5  交汇处的液滴运动行为[37]

    Figure  5.  Droplet behaviors at the intersection[37]

    图  6  通道交汇处的液滴碰撞示意图[37]

    Figure  6.  Schematic diagram of droplet collision at the channel intersection[37]

    图  7  微通道网络结构示意图[49]

    Figure  7.  Schematic diagrams of the microchannel network[49]

    图  8  液滴在微通道网络中的运动行为[49]

    Figure  8.  Droplet behaviors in the microchannel network[49]

    图  9  图 8中前4个液滴质心的无量纲速度和"液滴3-液滴4"无量纲间距随时间变化规律[49]

    Figure  9.  Variations of dimensionless velocity of the mass center of first four droplets and dimensionless distance between "droplet 3-droplet 4" in Fig. 8[49]

    图  10  气泡引导液滴捕获的示意图[49]

    Figure  10.  Schematic diagram of droplet trapping with bubble guidance[49]

    图  11  微凹槽通道结构示意图[55]

    Figure  11.  Schematic diagram of the microchannel groove[55]

    图  12  微凹槽内的3种流动形态[55]

    Figure  12.  Three flow regimes within microgrooves[55]

    图  13  凹槽内流动形态的分布相图[55]

    Figure  13.  The phase diagram of flow regimes within microgrooves[55]

    图  14  微凹槽粒子捕获方式[58]

    Figure  14.  Particle trapping regimes within microgrooves[58]

    图  15  粒子捕获方式的分布相图[58]

    Figure  15.  The phase diagram of particle trapping regime[58]

    图  16  凹槽内液体的染色实验结果[58]

    Figure  16.  Dye experimental results within microgrooves[58]

    图  17  不同粒径的单个粒子运动轨道[60]

    Figure  17.  Recirculating orbits of single particles with various sizes[60]

    图  18  不同粒径的2个粒子运动轨道[61]

    Figure  18.  Recirculating orbits of two particles with different sizes[61]

    图  19  不同Re下的单个粒子运动轨道(a=20 μm)[61]

    Figure  19.  Recirculating orbits of single particles with various Re (a=20 μm)[61]

  • [1] 林炳承.微纳流控芯片实验室[M].北京:科学出版社, 2013.
    [2] 李战华, 吴健康, 胡国庆, 等.微流控芯片中的流体流动[M].北京:科学出版社, 2012.

    LI Z H, WU J K, HU G Q, et al. Fluid flow in microfluidic chips[M]. Beijing:Science Press, 2012.
    [3] 陈晓东, 胡国庆.微流控器件中的多相流动[J].力学进展, 2015, 45:201503. doi: 10.6052/1000-0992-14-063

    CHEN X D, HU G Q. Multiphase flow in microfluidic devices[J]. Advances in Mechanics, 2015, 45:201503. doi: 10.6052/1000-0992-14-063
    [4] 司廷, 李广滨, 尹协振.流动聚焦及射流不稳定性[J].力学进展, 2017, 47:201706. doi: 10.6052/1000-0992-16-026

    SI T, LI G B, YIN X Z. Flow focusing and jet instability[J]. Advances in Mechanics, 2017, 47:201706. doi: 10.6052/1000-0992-16-026
    [5] LIN X, BAO F, TU C, et al. Dynamics of bubble formation in highly viscous liquid in co-flowing microfluidic device[J]. Microfluidics and Nanofluidics, 2019, 23(5):74. doi: 10.1007/s10404-019-2221-2
    [6] PANG Y, KIM H, LIU Z, et al. A soft microchannel decreases polydispersity of droplet generation[J]. Lab on a Chip, 2014, 14(20):4029-4034. doi: 10.1039/C4LC00871E
    [7] PANG Y, DU Y, WANG J, et al. Generation of single/double Janus emulsion droplets in co-flowing microtube[J]. International Journal of Multiphase Flow, 2019, 113:199-207. doi: 10.1016/j.ijmultiphaseflow.2019.01.011
    [8] LIU Z M, LI M, PANG Y, et al. Flow characteristics inside droplets moving in a curved microchannel with rectangular section[J]. Physics of Fluids, 2019, 31(2):022004. doi: 10.1063/1.5080373
    [9] FUERSTMAN M J, GARSTECKI P, WHITESIDES G M. Coding/decoding and reversibility of droplet trains in microfluidic networks[J]. Science, 2007, 315(5813):828. doi: 10.1126/science.1134514
    [10] PANG Y, WANG X, LIU Z M. Study of droplet flow in a T-shape microchannel with bottom wall fluctuation[J]. Acta Mechanica Sinica, 2018, 34(4):632-643. doi: 10.1007/s10409-018-0750-7
    [11] LIU Z, ZHANG L, PANG Y, et al. Micro-PIV investigation of the internal flow transitions inside droplets traveling in a rectangular microchannel[J]. Microfluidics and Nanofluidics, 2017, 21(12):180. doi: 10.1007/s10404-017-2019-z
    [12] BAROUD C N, GALLAIRE F, DANGLA R. Dynamics of microfluidic droplets[J]. Lab on a Chip, 2010, 10(16):2032-2045. doi: 10.1039/c001191f
    [13] SEEMANN R, BRINKMANN M, PFOHL T, et al. Droplet based microfluidics[J]. Rep Prog Phys, 2012, 75(1):016601. doi: 10.1088/0034-4885/75/1/016601
    [14] LIU Z, ZHAO J, PANG Y, et al. Generation of droplets in the T-junction with a constriction microchannel[J]. Microfluidics and Nanofluidics, 2018, 22(11):124. doi: 10.1007/s10404-018-2144-3
    [15] MUINELO-ROMAY L, VIEITO M, ABALO A, et al. Evaluation of circulating tumor cells and related events as prognostic factors and surrogate biomarkers in advanced NSCLC patients receiving first-line systemic treatment[J]. Cancers, 2014, 6(1):153-165. doi: 10.3390/cancers6010153
    [16] LIU C, HU G, JIANG X, et al. Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers[J]. Lab on a Chip, 2015, 15(4):1168-1177. doi: 10.1039/C4LC01216J
    [17] REN Y, LIU X, LIU W, et al. Flexible particle flow-focusing in microchannel driven by droplet-directed induced-charge electroosmosis[J]. Electrophoresis, 2018, 39(4):597-607. doi: 10.1002/elps.201700305
    [18] TONER M, IRIMIA D. Blood-on-a-chip[J]. Annu Rev Biomed Eng, 2005, 7:77-103. doi: 10.1146/annurev.bioeng.7.011205.135108
    [19] DI CARLO D. Inertial microfluidics[J]. Lab on a Chip, 2009, 9(21):3038-3046. doi: 10.1039/b912547g
    [20] WANG J, YU D. Asymmetry of flow fields and asymmetric breakup of a droplet[J]. Microfluidics and Nanofluidics, 2014, 18(4):709-715. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e4f199d28ea9c8d33235fba14ba66132
    [21] WANG X, LIU Z M, PANG Y. Droplet breakup in an asymmetric bifurcation with two angled branches[J]. Chemical Engineering Science, 2018, 188:11-17. doi: 10.1016/j.ces.2018.05.003
    [22] WANG X, LIU Z M, PANG Y. Breakup dynamics of droplets in an asymmetric bifurcation by μPIV and theoretical investigations[J]. Chemical Engineering Science, 2019, 197:258-268. doi: 10.1016/j.ces.2018.12.030
    [23] LINK D R, ANNA S L, WEITZ D A, et al. Geometrically mediated breakup of drops in microfluidic devices[J]. Phys Rev Lett, 2004, 92(5):054503. doi: 10.1103/PhysRevLett.92.054503
    [24] LESHANSKY A M, PISMEN L M. Breakup of drops in a microfluidic T junction[J]. Physics of Fluids, 2009, 21(2):023303. doi: 10.1063/1.3078515
    [25] FU T, MA Y, FUNFSCHILLING D, et al. Dynamics of bubble breakup in a microfluidic T-junction divergence[J]. Chemical Engineering Science, 2011, 66(18):4184-4195. doi: 10.1016/j.ces.2011.06.003
    [26] CHEN Y, DENG Z. Hydrodynamics of a droplet passing through a microfluidic T-junction[J]. Journal of Fluid Mechanics, 2017, 819:401-434. doi: 10.1017/jfm.2017.181
    [27] CHEN B, LI G, WANG W, et al. 3D numerical simulation of droplet passive breakup in a micro-channel T-junction using the Volume-of-Fluid method[J]. Applied Thermal Engineering, 2015, 88:94-101. doi: 10.1016/j.applthermaleng.2014.11.084
    [28] JULLIEN M C, TSANG MUI CHING M J, COHEN C, et al. Droplet breakup in microfluidic T-junctions at small capillary numbers[J]. Physics of Fluids, 2009, 21(7):072001. doi: 10.1063/1.3170983
    [29] SAMIE M, SALARI A, SHAFII M B. Breakup of microdroplets in asymmetric T junctions[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2013, 87(5):053003. doi: 10.1103/PhysRevE.87.053003
    [30] YAMADA M, DOIS, MAENAKA H, et al. Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis[J]. J Colloid Interface Sci, 2008, 321(2):401-407. doi: 10.1016/j.jcis.2008.01.036
    [31] VAN STEIJN V, KLEIJN C R, KREUTZER M T. Flows around confined bubbles and their importance in triggering pinch-off[J]. Phys Rev Lett, 2009, 103(21):214501. doi: 10.1103/PhysRevLett.103.214501
    [32] SUN X, ZHU C, FU T, et al. Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction[J]. Chemical Engineering Science, 2018, 188:158-169. doi: 10.1016/j.ces.2018.05.027
    [33] CHESTERS A K. The modelling of coalescence processes in fluid-liquid dispersions:a review of current understanding[J]. Chemical Engineering Research and Design, 1991, 69:259-270.
    [34] SHEN F, LI Y, LI MU Z, et al. Advances in Micro-droplets coalescence using microfluidics[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12):1942-1954. doi: 10.1016/S1872-2040(15)60886-6
    [35] GAI Y, KHOR J W, TANG S K Y. Confinement and viscosity ratio effect on droplet break-up in a concentrated emulsion flowing through a narrow constriction[J]. Lab on a Chip, 2016, 16(16):3058-3064. doi: 10.1039/C6LC00478D
    [36] LIU Z M, WANG X, CAO R T, et al. Droplet coalescence at microchannel intersection chambers with different shapes[J]. Soft Matter, 2016, 12(26):5797-5807. doi: 10.1039/C6SM01158F
    [37] LIU Z M, CAO R T, PANG Y, et al. The influence of channel intersection angle on droplets coalescence process[J]. Experiments in Fluids, 2015, 56(2):24. doi: 10.1007/s00348-015-1901-2
    [38] CHRISTOPHER G F, BERGSTEIN J, END N B, et al. Coalescence and splitting of confined droplets at microfluidic junctions[J]. Lab on a Chip, 2009, 9(8):1102-1109. doi: 10.1039/b813062k
    [39] WANG K, LU Y, YANG L, et al. Microdroplet coalescences at microchannel junctions with different collision angles[J]. AIChE Journal, 2013, 59(2):643-649. doi: 10.1002/aic.13825
    [40] WANG X, LIU Z, PANG Y. Collision characteristics of droplet pairs with the presence of arriving distance differences[J]. Journal of Industrial and Engineering Chemistry, 2019, 69:225-232. doi: 10.1016/j.jiec.2018.09.017
    [41] RISTENPART W D, BIRD J C, BELMONTE A, et al. Non-coalescence of oppositely charged drops[J]. Nature, 2009, 461(7262):377-380. doi: 10.1038/nature08294
    [42] BORRELL M, YOON Y, LEAL L G. Experimental analysis of the coalescence process via head-on collisions in a time-dependent flow[J]. Physics of Fluids, 2004, 16(11):3945-3954. doi: 10.1063/1.1795291
    [43] SHEN F, LI Y, LIU Z, et al. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement[J]. Microfluidics and Nanofluidics, 2017, 21(4):66. doi: 10.1007/s10404-017-1902-y
    [44] WANG X, LIU Z, PANG Y. Concentration gradient generation methods based on microfluidic systems[J]. RSC Advances, 2017, 7(48):29966-29984. doi: 10.1039/C7RA04494A
    [45] SHEN F, LI Y, WANG G, et al. Mechanisms of rectangular groove-induced multiple-microdroplet coalescences[J]. Acta Mechanica Sinica, 2017, 33(3):585-594. doi: 10.1007/s10409-016-0623-x
    [46] OH K W, LEE K, AHN B, et al. Design of pressure-driven microfluidic networks using electric circuit analogy[J]. Lab on a Chip, 2012, 12(3):515-545. doi: 10.1039/C2LC20799K
    [47] BRUUS H. Theoretical Microfluidics[M]. New York:Oxford University Press, 2008.
    [48] BITHI S S, VANAPALLI S A. Collective dynamics of non-coalescing and coalescing droplets in microfluidic parking networks[J]. Soft Matter, 2015, 11(25):5122-5132. doi: 10.1039/C5SM01077B
    [49] ZHANG L, LIU Z, PANG Y, et al. Trapping a moving droplet train by bubble guidance in microfluidic networks[J]. RSC Advances, 2018, 8(16):8787-8794. doi: 10.1039/C7RA13507F
    [50] BITHI S S, WANG W S, SUN M, et al. Coalescing drops in microfluidic parking networks:A multifunctional platform for drop-based microfluidics[J]. Biomicrofluidics, 2014, 8(3):034118. doi: 10.1063/1.4885079
    [51] WEN H, YU Y, ZHU G, et al. A droplet microchip with substance exchange capability for the developmental study of C. elegans[J]. Lab on a Chip, 2015, 15(8):1905-1911. doi: 10.1039/C4LC01377H
    [52] BITHI S S, NEKOUEI M, VANAPALLI S A. Bistability in the hydrodynamic resistance of a drop trapped at a microcavity junction[J]. Microfluidics and Nanofluidics, 2017, 21(11):164. doi: 10.1007/s10404-017-2006-4
    [53] PARTHIBAN P, KHAN S A. Bistability in droplet traffic at asymmetric microfluidic junctions[J]. Biomicrofluidics, 2013, 7(4):44123. doi: 10.1063/1.4819276
    [54] JIANG M, QIAN S, LIU Z. Fully resolved simulation of single-particle dynamics in a microcavity[J]. Microfluidics and Nanofluidics, 2018, 22(12):144. doi: 10.1007/s10404-018-2166-x
    [55] SHEN F, XIAO P, LIU Z. Microparticle image velocimetry (μPIV) study of microcavity flow at low Reynolds number[J]. Microfluidics and Nanofluidics, 2015, 19(2):403-417. doi: 10.1007/s10404-015-1575-3
    [56] SHEN F, XU M, ZHOU B, et al. Effects of geometry factors on microvortices evolution in confined square microcavities[J]. Microfluidics and Nanofluidics, 2018, 22(4):36. doi: 10.1007/s10404-018-2056-2
    [57] HUR S C, MACH A J, DI CARLO D. High-throughput size-based rare cell enrichment using microscale vortices[J]. Biomicrofluidics, 2011, 5(2):22206. doi: 10.1063/1.3576780
    [58] SHEN F, XUE S, XU M, et al. Experimental study of single-particle trapping mechanisms into microcavities using microfluidics[J]. Physics of Fluids, 2019, 31(4):042002. doi: 10.1063/1.5081918
    [59] HADDADI H, DI CARLO D. Inertial flow of a dilute suspension over cavities in a microchannel[J]. Journal of Fluid Mechanics, 2016, 811:436-467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=435554999de0a62bd593baf5d6296ede
    [60] SHEN F, XU M, WANG Z, et al. Single-particle trapping, orbiting, and rotating in a microcavity using microfluidics[J]. Applied Physics Express, 2017, 10(9):097301. doi: 10.7567/APEX.10.097301
    [61] SHEN F, XUE S, ZHOU B, et al. Evolution of single-particle recirculating orbits within a hydrodynamic microvortex[J]. Journal of Micromechanics and Microengineering, 2018, 28(8):085018. doi: 10.1088/1361-6439/aac02d
  • 加载中
图(19)
计量
  • 文章访问数:  428
  • HTML全文浏览量:  167
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-22
  • 修回日期:  2020-01-06
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日