留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微凹槽内液滴流场特性的Micro-PIV实验研究

申峰 闫成金 李梦麒 姬德茹 刘赵淼

申峰, 闫成金, 李梦麒, 等. 微凹槽内液滴流场特性的Micro-PIV实验研究[J]. 实验流体力学, 2020, 34(2): 67-72. doi: 10.11729/syltlx20190117
引用本文: 申峰, 闫成金, 李梦麒, 等. 微凹槽内液滴流场特性的Micro-PIV实验研究[J]. 实验流体力学, 2020, 34(2): 67-72. doi: 10.11729/syltlx20190117
SHEN Feng, YAN Chengjin, LI Mengqi, et al. Micro-PIV study on flow field characteristics of droplets in a microcavity[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 67-72. doi: 10.11729/syltlx20190117
Citation: SHEN Feng, YAN Chengjin, LI Mengqi, et al. Micro-PIV study on flow field characteristics of droplets in a microcavity[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 67-72. doi: 10.11729/syltlx20190117

微凹槽内液滴流场特性的Micro-PIV实验研究

doi: 10.11729/syltlx20190117
基金项目: 

国家自然科学基金 11572013

国家自然科学基金 11872083

详细信息
    作者简介:

    申峰(1980-), 男, 山东济南人, 博士, 副教授。研究方向:微流动、实验流体力学。通信地址:北京市朝阳区平乐园100号北京工业大学机械工程与应用电子技术学院(100124)。E-mail:shenfeng@bjut.edu.cn

    通讯作者:

    刘赵淼, E-mail: lzm@bjut.edu.cn

  • 中图分类号: O35

Micro-PIV study on flow field characteristics of droplets in a microcavity

  • 摘要: 液滴已成为微流控技术的重要研究内容。为了精确调控液滴内的微环境,利用微通道矩形长凹槽生成并封裹液滴,并开展了液滴内部流场特性的显微粒子图像测速(Micro-PIV)实验,研究了雷诺数(Re)对液滴形貌、流场速度矢量场特性和剪应力分布的影响。结果表明,当Re=11.1时,液滴内部出现了一个涡胞结构;当Re=33.3时,液滴中心处的流速达到最大值,约为10 μm/s。然而,当Re=44.4时,涡胞消失,平均流速降低。同时,液滴尺寸随Re增加而减小。此外,Re对液滴内部剪应力变化无明显影响,剪应力平均值极低(< 1.5×10-4Pa)。
  • 图  1  实验系统

    Figure  1.  Experimental system

    图  2  不同Re下长凹槽内液滴的形貌变化

    Figure  2.  Morphology of droplets in the long microcavity for different Re

    图  3  Micro-PIV测量的不同Re下液滴内部流线图及速度云图

    Figure  3.  Flow field diagram and velocity cloud diagram of droplets in the long microcavity for different Re

    图  4  Micro-PIV测量的不同Re下液滴内部xy方向的流场及速度云图

    Figure  4.  Diagram of flow field and velocity in x and y direction inside droplet in the long microcavity for different Re

    图  5  提取的不同Re下长凹槽液滴内竖线位置的流速分布

    Figure  5.  The velocity distributions along the line across the droplet in the long microcavity for different Re

    图  6  不同Re下的长微凹槽液滴内部流场结构及剪应力分布云图

    Figure  6.  Flow field structures and cloud diagram of shear stress in the droplets in the long microcavity under different Re

    图  7  Micro-PIV测量的不同Re下长凹槽内部压力

    Figure  7.  Internal stress of long microcavity for different Re

  • [1] RANE T D, ZEC H C, PULEO C, et al. Droplet microfluidics for amplification-free genetic detection of single cells[J]. Lab on a Chip, 2012, 12(18):3341-3347. doi: 10.1039/c2lc40537g
    [2] MAZUTIS L, GILBERT J, UNG W L, et al. Single-cell analysis and sorting using droplet-based microfluidics[J]. Nature Protocols, 2013, 8(5):870-891. doi: 10.1038/nprot.2013.046
    [3] HE M, EDGAR J S, JEFFRIES G D M, et al. Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets[J]. Analytical Chemistry, 2005, 77(6):1539-1544. doi: 10.1021/ac0480850
    [4] 张凯, 胡坪, 梁琼麟, 等.微流控芯片中微液滴的操控及其应用[J].分析化学, 2008, 36(4):556-562. doi: 10.3321/j.issn:0253-3820.2008.04.029

    ZHANG K, HU P, LIANG Q L, et al. Control and application of microdroplet in microfluidic chip[J]. Chinese Journal of Analytical Chemistry, 2008, 36(4):556-562. doi: 10.3321/j.issn:0253-3820.2008.04.029
    [5] CLAUSELL-TORMOS J, LIEBER D, BARET J C, et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms[J]. Chemistry and Biology, 2008, 15(5):427-437. doi: 10.1016/j.chembiol.2008.04.004
    [6] PIAO Y, HAN D J, AZAD M R, et al. Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets[J]. Biosensors and Bioelectronics, 2015, 65:220-225. doi: 10.1016/j.bios.2014.10.032
    [7] BROUZES E, MEDKOVA M, SAVENELLI N, et al. Droplet microfluidic technology for single-cell high-throughput screening[J]. PNAS, 2009, 106(34):14195-14200. doi: 10.1073/pnas.0903542106
    [8] LEE D, BAE C, HAN J, et al. In situ analysis of heterogeneity in the lipid content of single green microalgae in alginate hydrogel microcapsules[J]. Analytical Chemistry, 2013, 85(18):8749-8756. doi: 10.1021/ac401836j
    [9] PAN J, STEPHENSON A L, KAZAMIA E, et al. Quantitative tracking of the growth of individual algal cells in microdroplet compartments[J]. Integrative Biology, 2011, 3(10):1043-1051. doi: 10.1039/c1ib00033k
    [10] LIU K, PITCHIMANI R, DANG D, et al. Cell culture chip using low-shear mass transport[J]. Langmuir, 2008, 24(11):5955-5960. doi: 10.1021/la8003917
    [11] YU L, CHEN M, CHEUNG K. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing[J]. Lab on a Chip, 2010, 10(18):2424-32. doi: 10.1039/c004590j
    [12] SHEN F, XIAO P, LIU Z M. Microparticle image velocimetry (μPIV) study of microcavity flow at low Reynolds number[J]. Microfluidics and Nanofluidics, 2015, 19(2):403-417. doi: 10.1007/s10404-015-1575-3
    [13] YEW A G, PINERO D, HSIEH A H, et al. Low Peclet number mass and momentum transport in microcavities[J]. Appl Phys Lett, 2013, 102:084108. doi: 10.1063/1.4794058
    [14] LIU K, TIAN Y, BURROWS S M, et al. Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy[J]. Anal Chim Acta, 2009, 651:85-90. doi: 10.1016/j.aca.2009.08.007
    [15] LIU Z M, LI M Q, PANG Y, et al. Flow characteristics inside droplets moving in a curved microchannel with rectangular section[J]. Physics of Fluids, 2019, 30:022004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35c9a2aa237b8a35c983708e3dfb0ad9
    [16] HUR S C, MACH A J, DI C D. High-throughput size-based rare cell enrichment using microscale vortices[J]. Biomicrofluidics, 2011, 5(2):341. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3171489
    [17] MACH A J, KIM J H, ARSHI A, et al. Automated cellular sample preparation using a centrifuge-on-a-chip[J]. Lab Chip, 2011, 11(17):2827. doi: 10.1039/c1lc20330d
    [18] SHEN F, XU M, ZHOU B, et al. Effects of geometry factors on microvortices evolution in confined square microcavities[J]. Microfluidics and Nanofluidics, 2018, 22(4):36. doi: 10.1007/s10404-018-2056-2
    [19] HARDY B S, UECHI K, ZHEN J, et al. The deformation of flexible PDMS microchannels under a pressure driven flow[J]. Lab on a Chip, 2009, 9(7):935-938. doi: 10.1039/B813061B
    [20] SHEN F, LI X, LI P C H. Study of flow behaviors on single-cell manipulation and shear stress reduction in microfluidic chips using computational fluid dynamics simulations[J]. Biomicrofluidics, 2014, 8(1):014109. doi: 10.1063/1.4866358
  • 加载中
图(7)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  110
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-02
  • 修回日期:  2019-09-19
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日