留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲外锥乘波前体进气道流量测量及实验与仿真对比研究

贺旭照 周正 张俊韬 贺元元 吴颖川

贺旭照, 周正, 张俊韬, 等. 曲外锥乘波前体进气道流量测量及实验与仿真对比研究[J]. 实验流体力学, 2020, 34(6): 18-23. doi: 10.11729/syltlx20190095
引用本文: 贺旭照, 周正, 张俊韬, 等. 曲外锥乘波前体进气道流量测量及实验与仿真对比研究[J]. 实验流体力学, 2020, 34(6): 18-23. doi: 10.11729/syltlx20190095
HE Xuzhao, ZHOU Zheng, ZHANG Juntao, et al. Mass flux measurement and comparison study of simulation and experiment on curved cone waverider forebody inlet[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 18-23. doi: 10.11729/syltlx20190095
Citation: HE Xuzhao, ZHOU Zheng, ZHANG Juntao, et al. Mass flux measurement and comparison study of simulation and experiment on curved cone waverider forebody inlet[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 18-23. doi: 10.11729/syltlx20190095

曲外锥乘波前体进气道流量测量及实验与仿真对比研究

doi: 10.11729/syltlx20190095
基金项目: 

国家自然科学基金 51376192

详细信息
    作者简介:

    贺旭照(1977-), 男, 陕西蒲城人, 博士, 研究员。研究方向:高超声速先进气动布局及一体化内外流耦合设计流动研究。通信地址:四川省绵阳市二环路南段6号16信箱01分箱(621000)。E-mail:2233475937@qq.com

    通讯作者:

    张俊韬, E-mail: zzt136@163.com

  • 中图分类号: V235.213

Mass flux measurement and comparison study of simulation and experiment on curved cone waverider forebody inlet

  • 摘要: 流量捕获特性是高超声速进气道的重要特性。针对一体化曲外锥乘波前体进气道,开展了流量特性精细测量分析以及实验与仿真对比研究。采用节流实验系统,在来流马赫数3.0、3.5和4.0,迎角-4°至6°和不同进锥位置上,获得了该型前体进气道的流量特性,分析了流量测量均方根误差。开展了来流马赫数4.0、迎角-4°~6°条件下的实验与仿真对比研究。研究结果表明:一体化曲外锥乘波前体进气道构型具有良好的流动捕获能力,在来流马赫数3.5、4.0和6.0以及迎角0°条件下,流量系数分别为0.60、0.68和1.00;在节流实验系统充分壅塞的条件下,流量测量均方根误差在2%以内;仿真所获流量特性随迎角变化的线性度较好,和实验结果的吻合度较高。
  • 图  1  一体化曲外锥乘波前体进气道设计方法示意图

    Figure  1.  Schematic map of CCWI design method

    图  2  隔离段几何变形示意图

    Figure  2.  Schematic map of isolate's geometric transition

    图  3  实验模型的三维视图

    Figure  3.  Three dimensional view of the geometric constrained experimental model

    图  4  实验系统示意图

    Figure  4.  Schematic map of the experimental systems

    图  5  安装于实验段内的模型

    Figure  5.  Photograph of the fully assembled CCWI model in wind tunnel's test section

    图  6  实验系统静压及皮托压力测点位置示意图

    Figure  6.  Three views of the OCCWI experimental model

    图  7  实验模型唇口区域纹影图(Ma=3.0、3.5和4.0, α=0°)

    Figure  7.  Schlieren maps(Ma=3.0, 3.5, 4.0, α=0°)

    图  8  不同锥位条件下流量筒E-E截面上的马赫数云图(Ma=4.0, α=0°)

    Figure  8.  Mach number distributions in E-E plane at different throttling cone positions(Ma=4.0, α=0°)

    图  9  来流马赫数4.0时各堵锥位置的进气道流量系数

    Figure  9.  Mass flow ratios at different throttling cone positions with Ma=4.0

    图  10  不同马赫数和迎角下的流量系数分布图

    Figure  10.  Mass flow ratios under different incoming flow conditions

    图  11  仿真计算网格示意图

    Figure  11.  Schematic map of the experimental model's simulation grids

    图  12  各静压测量线上的仿真和实验结果对比

    Figure  12.  Static pressure comparison between experimental and CFD results

    图  13  隔离段出口皮托压力实验和数值仿真结果对比

    Figure  13.  Pitot pressure comparison between experimental and CFD results

    图  14  计算和实验获得的流量系数在不同来流条件下的比较

    Figure  14.  Mass flow ratio under different incoming flow conditions obtained from experimental data and CFD simulations

    图  15  一体化CCWI构型的流量系数随来流马赫数和迎角的变化曲线

    Figure  15.  Mass flux ratio of CCWI at Ma=6.0 and 4.0

  • [1] MUTZMAN R. MURPHY S. X-51 development: a chief engineer's perspective[C]//Proc of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2011.
    [2] KVCHEMANN D. The aerodynamic design of aircraft[M]. Oxford:Pergamon Press, 1978.
    [3] HANEY J W, BEAULIEU W D. Waverider inlet integration issues[R]. AIAA-1994-0383, 1994.
    [4] HEISER W H, PRATT D T, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Washington, DC:AIAA Inc., 1994.
    [5] BERENS T M, BISSINGER N C. Forebody precompression effects and inlet entry conditions for hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 1998, 35(1):30-36. doi: 10.2514/3.26994
    [6] BILLIG F S, BAURLE R A, TAM C J, et al. Design and analysis of streamline traced hypersonic inlets[R]. AIAA-1999-4974, 1999.
    [7] SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3):408-416. doi: 10.2514/2.5459
    [8] O'NEILL M K L, LEWIST M J. Optimized scramjet integration on a waverider[J]. Journal of Aircraft, 1992, 29(6):1114-1123. doi: 10.2514/3.56866
    [9] TAKASHIMA N, LEWIS M J. Engine-airframe integration on osculating cone waverider-based vehicle designs[R]. AIAA-1996-2551, 1996.
    [10] O'BRIEN T F, LEWIS M J. Rocket-based combined-cycle engine integration on an osculating cone waverider vehicle[J]. Journal of Aircraft, 2001, 38(6):1117-1123. doi: 10.2514/2.2880
    [11] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock waves[C]//Proc of the 1st International Hypersonic Waverider Symposium. 1990.
    [12] STARKEY R P, LEWIS M J. Design of an engine-airframe integrated hypersonic missile within fixed box constraints[R]. AIAA-1999-0509, 1999.
    [13] SHUKLA V, GELSEY A, SCHWABACHER M, et al. Automated design optimization for the P2 and P8 hypersonic inlets[J]. Journal of Aircraft, 1997, 34(2):228-235. doi: 10.2514/2.2161
    [14] YOU Y C, ZHU C X, GUO J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody[R]. AIAA-2009-7421, 2009.
    [15] LI Y Q, AN P, PAN C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody[R]. AIAA-2014-3229, 2014.
    [16] 贺旭照, 周正, 倪鸿礼.密切内锥乘波前体进气道一体化设计和性能分析[J].推进技术, 2012, 33(4):510-515. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201204004.htm

    HE X Z, ZHOU Z, NI H L.Integrated design methods and performance analyses of Osculating Inward turning Cone Waverider forebody Inlet(OICWI)[J]. Journal of Propulsion Technology, 2012, 33(4):510-515. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201204004.htm
    [17] HE X Z, LE J L, ZHOU Z, et al. Osculating Inward turning Cone Waverider/Inlet (OICWI) design methods and experimen-tal study[R]. AIAA-2012-5810, 2012.
    [18] 周正, 贺旭照, 卫锋, 等.密切曲内锥乘波前体进气道低马赫数性能试验研究[J].推进技术, 2016, 37(8):1455-1460. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201608007.htm

    ZHOU Z, HE X Z, WEI F, et al. Experimental studies of Osculating Inward turning Cone Waverider forebody Inlet(OICWI) at low Mach number conditions[J]. Journal of Propulsion Technology, 2016, 37(8):1455-1460. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201608007.htm
    [19] 贺旭照, 乐嘉陵.曲外锥乘波体进气道的一体化设计和性能分析[J].推进技术, 2018, 39(10):2313-2319. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201810015.htm

    HE X Z, LE J L. Design and performances analysis of integrated Curved Cone Waverider Inlet[J]. Journal of Propulsion Technology, 2018, 39(10):2313-2319. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201810015.htm
    [20] HE X Z, LE J L, WU Y C. Design of a curved cone derived waverider forebody[R]. AIAA-2009-7423, 2009.
    [21] 贺旭照, 倪鸿礼, 密切曲面锥乘波体——设计方法与性能分析[J].力学学报, 2011, 43(6):1077-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201106013.htm

    HE X Z, NI H L, Osculating Curved Cone(OCC) waverider:Design method and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1077-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201106013.htm
    [22] TAYLOR T M, VanWie D. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths[R]. AIAA-2008-2635, 2008.
    [23] 贺旭照, 赵慧勇, 乐嘉陵.考虑可压缩与热传导的壁面函数边界条件及其应用[J].空气动力学学报, 2006, 24(4):450-453. doi: 10.3969/j.issn.0258-1825.2006.04.010

    HE X Z, ZHAO H Y, LE J L. Application of wall function boundary condition considering heat transfer and compressibility[J]. Acta Aerodynamica Sinica, 2006, 24(4):450-453. doi: 10.3969/j.issn.0258-1825.2006.04.010
  • 加载中
图(15)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  135
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-02
  • 修回日期:  2020-02-10
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日