留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

本生灯法结合纹影技术测量甲烷/空气层流燃烧速度及流场分析

相龙凯 牙宇晨 聂晓康 任飞 柯伟 楚化强

相龙凯, 牙宇晨, 聂晓康, 等. 本生灯法结合纹影技术测量甲烷/空气层流燃烧速度及流场分析[J]. 实验流体力学, 2020, 34(1): 25-32. doi: 10.11729/syltlx20190087
引用本文: 相龙凯, 牙宇晨, 聂晓康, 等. 本生灯法结合纹影技术测量甲烷/空气层流燃烧速度及流场分析[J]. 实验流体力学, 2020, 34(1): 25-32. doi: 10.11729/syltlx20190087
XIANG Longkai, YA Yuchen, NIE Xiaokang, et al. Measurements of laminar burning velocity and analysis of its field for the laminar premixed methane-air flames using the Bunsen burner method and schlieren technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 25-32. doi: 10.11729/syltlx20190087
Citation: XIANG Longkai, YA Yuchen, NIE Xiaokang, et al. Measurements of laminar burning velocity and analysis of its field for the laminar premixed methane-air flames using the Bunsen burner method and schlieren technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 25-32. doi: 10.11729/syltlx20190087

本生灯法结合纹影技术测量甲烷/空气层流燃烧速度及流场分析

doi: 10.11729/syltlx20190087
基金项目: 

国家自然科学基金 51676002

国家自然科学基金 5187827808

详细信息
    作者简介:

    相龙凯(1994-), 男, 山东济宁人, 硕士研究生。研究方向:燃烧特性与化学反应动力学。通信地址:安徽省马鞍山市花山区湖东路59号安徽工业大学本部(243002)。E-mail:xlkszstsl.kc@hotmail.com

    通讯作者:

    楚化强, E-mail:hqchust@163.com

  • 中图分类号: TK124

Measurements of laminar burning velocity and analysis of its field for the laminar premixed methane-air flames using the Bunsen burner method and schlieren technique

  • 摘要: 层流燃烧速度是确定燃烧传播模型和验证化学反应机理的关键参数。搭建了本生灯实验系统和纹影实验系统用于探究甲烷预混层流燃烧特性,通过本生灯法和纹影技术测得了甲烷/氮气/空气的层流燃烧速度和火焰外部流场,并且探究了当量比及氮气掺混对层流燃烧速度和火焰外部流场的影响。研究发现,当量比对甲烷层流预混火焰燃烧特性有着重要的影响,随着当量比的增加,层流燃烧速度先增大后减小,锥形火焰高度先减小后增加,火焰外部流场开始逐渐趋于稳定;氮气掺混对层流燃烧速度起着降低的作用,且掺混的氮气越多,层流燃烧速度降低幅度越大;掺混氮气后火焰高度增加,但是火焰外部流场变得更加紊乱,难以稳定。
  • 图  1  层流燃烧速度测量实验装置示意图

    Figure  1.  Schematic of laminar burning velocity measurement

    图  2  纹影装置示意图

    Figure  2.  Schematic of schlieren device

    图  3  本生灯3种标准火焰边界面图

    Figure  3.  Standard flame boundary surface of Bunsen burner

    图  4  层流预混火焰图像处理过程

    Figure  4.  Laminar premixed flame image processing

    图  5  甲烷/氮气/空气层流燃烧速度

    Figure  5.  Methane/nitrogen/air laminar burning velocity

    图  6  不同掺氮比下的H摩尔分数

    Figure  6.  Mole fraction of H at different N2 doping ratios

    图  7  纹影图中火焰位置和外部流场位置

    Figure  7.  Flame position and external flow field position in the schlieren

    图  8  甲烷流量为280 mL/min时,不同当量比下的层流预混火焰纹影

    Figure  8.  Laminar premixed flame schlieren photographs at different equivalence ratios with the methane flow rate of 280 mL/min

    图  9  甲烷流量为280 mL/min时,不同当量比下的层流预混火焰纹影

    Figure  9.  Laminar premixed flame schlieren photographs at different equivalence ratios with the methane flow rate of 280 mL/min

    图  10  甲烷掺混20%氮气、当量比为1.00~1.40时,甲烷/氮气/空气层流预混火焰外部流场纹影

    Figure  10.  Methane/N2/Air laminar premixed flame external field photograph with blending 20% N2 at Φ=1.10~1.40

    图  11  甲烷掺混40%氮气、当量比为1.00~1.30时,甲烷/氮气/空气层流预混火焰外部流场纹影

    Figure  11.  Methan/N2/Air laminar premixed flame external field photograph with blending 40% N2 at Φ=1.00~1.30

    表  1  甲烷/空气层流预混火焰实验工况

    Table  1.   Experimental data for CH4/Air laminar premixed flame

    当量比
    Φ
    甲烷流量
    /(mL·min-1)
    氧气流量
    /(mL·min-1)
    空气流量
    /(mL·min-1)
    0.90 280 622.22 2962.96
    0.95 280 589.47 2807.02
    1.00 280 560.00 2666.67
    1.05 280 533.33 2953.68
    1.10 280 509.09 2424.24
    1.15 280 486.96 2318.84
    1.20 280 466.67 2222.22
    1.25 280 448.00 2133.33
    1.30 280 430.77 2051.28
    1.35 280 414.81 1975.31
    1.40 280 400.00 1904.76
    1.45 280 386.21 1839.01
    1.50 280 666.67 1777.78
    1.55 280 361.29 1720.43
    1.60 280 350.00 1666.67
    下载: 导出CSV

    表  2  甲烷流量为260 mL/min、掺混20%氮气时实验工况

    Table  2.   Experimental data for methane of 260 mL/min with 20% N2 blending

    当量比
    Φ
    甲烷流量
    /(mL·min-1)
    氧气流量
    /(mL·min-1)
    空气流量
    /(mL·min-1)
    掺混氮气流量
    /(mL·min-1)
    总氮气流量
    /(mL·min-1)
    1.00 260 520.00 2476.19 65 2021.19
    1.05 260 495.24 2358.28 65 1928.04
    1.10 260 472.73 2251.08 65 1843.35
    1.15 260 452.17 2153.21 65 1766.04
    1.20 260 433.33 2063.49 65 1695.16
    1.25 260 416.00 1980.95 65 1629.95
    1.30 260 400.00 1904.76 65 1569.76
    1.35 260 385.19 1834.22 65 1514.03
    1.40 260 371.43 1768.21 65 1462.28
    下载: 导出CSV

    表  3  甲烷流量为260 mL/min、掺混40%氮气时实验工况

    Table  3.   Experimental data for methane of 260 mL/min with 40% N2 blending

    当量比
    Φ
    甲烷流量
    /(mL·min-1)
    氧气流量
    /(mL·min-1)
    空气流量
    /(mL·min-1)
    掺混氮气流量
    /(mL·min-1)
    总氮气流量
    /(mL·min-1)
    1.00 260 520.00 2476.19 173.33 2129.53
    1.05 260 495.24 2358.28 173.33 2036.37
    1.10 260 472.73 2251.08 173.33 1951.69
    1.15 260 452.17 2153.21 173.33 1874.37
    1.20 260 433.33 2063.49 173.33 1803.49
    1.25 260 416.00 1980.95 173.33 1738.29
    1.30 260 400.00 1904.76 173.33 1678.10
    1.35 260 385.19 1834.22 173.33 1622.36
    1.40 260 371.43 1768.21 173.33 1570.61
    下载: 导出CSV
  • [1] BP Statistical Review of World Energy 2019: an unsustainable path[EB/OL]. https://www.bp.com/content/dam/bp/country-sites/zh_cn/china/home/reports/bp-energy-outlook/2019/2019eobook.pdf.
    [2] DIRRENBERGER P, GALL H L, BOUNACEUR R, et al. Measurements of laminar flame velocity for components of natural gas[J]. Energy and Fuels, 2011, 25(9):3875-3884. doi: 10.1021/ef200707h
    [3] LAMOUREUX N, PAILLARD C E. Natural gas ignition delay times behind reflected shock waves: Application to modelling and safety[J]. Shock Waves, 2003, 13(1):57-68. http://cn.bing.com/academic/profile?id=5c06da8d042dc570b6d4990d722ad474&encoded=0&v=paper_preview&mkt=zh-cn
    [4] YANG W, LIU G, GONG Y, et al. Microbial alteration of natural gas in Xinglongtai field of the Bohai Bay Basin, China[J]. Chinese Journal of Geochemistry, 2012, 31(1):55-63. doi: 10.1007/s11631-012-0549-3
    [5] IBARRETA, ALFONSO F, SUNG C J. Flame temperature and location measurements of sooting premixed Bunsen flames by rainbow schlieren deflectometry[J]. Applied Optics, 2005, 44(17): 3565-3575. doi: 10.1364/AO.44.003565
    [6] DUNN-RANKIN D, WEINBERG F. Location of the schlieren image in premixed flames: axially symmetrical refractive index fields[J]. Combustion and Flame, 1998, 113(3):303-311. doi: 10.1016/S0010-2180(97)00233-2
    [7] ZHANG M, WANG J, XIE Y, et al. Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames[J]. Experimental Thermal and Fluid Science, 2014, 52: 288-296. doi: 10.1016/j.expthermflusci.2013.10.002
    [8] VEGA E V, LEE K Y. An experimental study on laminar CH4/O2/N2 premixed flames under an electric field[J]. Journal of Mechanical Science and Technology, 2008, 22(2):312-319. doi: 10.1007/s12206-007-1043-4
    [9] GU X, LI Q, HUANG Z. Laminar burning characteristics of diluted n-butanol/air mixtures[J]. Combustion Science and Technology, 2011, 183(12):1360-1375. doi: 10.1080/00102202.2011.600275
    [10] 周昊, 吕小亮, 李清毅, 等.应用背景纹影技术的温度场测量[J].中国电机工程学报, 2011, 31(5):63-67. http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201105012.htm

    ZHOU H, LYU X L, LI Q Y, et al. Temperature measurements using the background oriented schlieren technique[J]. Proceedings of the CSEE, 2011, 31(5): 63-37. http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201105012.htm
    [11] 张杨竣, 逯红梅, 王启, 等.天然气法向火焰传播速度仿真与实验测试[J].煤气与热力, 2016, 36(5):17-22. doi: 10.3969/j.issn.1000-4416.2016.05.005

    ZHANG Y J, LU H M, WANG Q, et al. Simulation and experimental test of normal flame propagation velocity of natural gas[J]. Gas & Heat, 2016, 36(5):17-22. doi: 10.3969/j.issn.1000-4416.2016.05.005
    [12] HU X, YU Q, LIU J, et al. Investigation of laminar flame speeds of CH4/O2/CO2 mixtures at ordinary pressure and kinetic simulation[J]. Energy, 2014, 70: 626-634. doi: 10.1016/j.energy.2014.04.029
    [13] DONG C, ZHOU Q, ZHAO Q, et al. Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures. Fuel, 2009, 88(10): 1858-1863. doi: 10.1016/j.fuel.2009.04.024
    [14] ZHEN H, LEUNG C, CHEUNG C, et al. Characterization of biogas-hydrogen premixed flames using Bunsen burner[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13292-13299. doi: 10.1016/j.ijhydene.2014.06.126
    [15] 王金华, 方宇, 黄佐华, 等.利用高速摄影纹影法研究天然气高压喷射射流特性[J].内燃机学报, 2007, 25(6): 500-504. doi: 10.3321/j.issn:1000-0909.2007.06.004

    WANG J H, FANG Y, HUANG Z H, et al. Experimental study of the jet characteristics of high pressure injected natural gas using high speed photograph method[J]. Transactions of CSICE, 2007, 25(6): 500-504. doi: 10.3321/j.issn:1000-0909.2007.06.004
    [16] 李华, 杨臧健, 吴敏, 等.纹影系统中物平面的选择与刀口的设置[J].实验流体力学, 2011, 25(3):91-96. doi: 10.3969/j.issn.1672-9897.2011.03.020

    LI H, YANG Z J, WU M, et al. Selection of object plane and arrangement of knife edge for a schlieren system[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):91-96. doi: 10.3969/j.issn.1672-9897.2011.03.020
    [17] REN F, CHU H, XIANG L, et al. Effect of hydrogen addition on the laminar premixed combustion characteristics the main components of natural gas[J]. Journal of the Energy Institute, 2019, 92(4): 1178-1190. doi: 10.1016/j.joei.2018.05.011
    [18] XIANG L, CHU H, REN F, et al. Numerical analysis of the effect of CO2 on combustion characteristics of laminar premixed methane/air flames[J]. Journal of the Energy Institute, 2019, 92(5): 1487-1501. doi: 10.1016/j.joei.2018.06.018
    [19] 王根娟, 杨臧健, 孟晟, 等.背景纹影定量化在层流轴对称火焰温度场测量中的应用研究[J].实验流体力学, 2015, 30(2):103-110. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10925.shtml

    WANG G J, YANG Z J, MENG S, et al. Application of quantitative background oriented schlieren in laminar axisymmetric flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2015, 30(2):103-110. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10925.shtml
    [20] 李兴虎.氮气稀释丙烷空气混合气的层流火焰速度测量[J].燃烧科学与技术, 2001, 7(4):288-289. doi: 10.3321/j.issn:1006-8740.2001.04.018

    LI X H. Mesasurement of laminar burning velocity on diluted air-propane mixture[J]. Journal of Combustion Science and Technology, 2001, 7(4):288-289. doi: 10.3321/j.issn:1006-8740.2001.04.018
    [21] HE Y, WANG Z, YANG L, et al. Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation[J]. Fuel, 2012, 95:206-213. doi: 10.1016/j.fuel.2011.09.056
    [22] MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1):3-17. doi: 10.1016/0894-1777(88)90043-X
    [23] KEE R J, RUPLEY F M, MILLER J A. Chemkin-Ⅱ: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics[R]. Sandia National Laboratories Report SAND89-8009B, 1993.
    [24] Chemical-Kinetic Mechanisms for Combustion Applications[EB/OL]. http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
    [25] DIRRENBERGER P, GALL H L, BOUNACEUR R, et al. Measurements of laminar burning velocities above atmospheric pressure using the heat flux method, application to the case of n-pentane[J]. Energy & Fuels, 2015, 29(1): 398-404. http://cn.bing.com/academic/profile?id=a82787013edc4093df3e44050419fcdf&encoded=0&v=paper_preview&mkt=zh-cn
    [26] ZAHEDI P, YOUSEFI K. Effects of pressure and carbon dioxide, hydrogen and nitrogen concentration on laminar burning velocities and NO formation of methane-air mixtures[J]. Journal of Mechanical Science and Technology, 2014, 28(1): 377-386. doi: 10.1007/s12206-013-0970-5
    [27] MAZAS A N, FIORINA B, LACOSTE D A, et al. Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames[J]. Combustion and Flame, 2011, 158(12): 2428-2440. doi: 10.1016/j.combustflame.2011.05.014
    [28] NILSSON E J K, VAN SPRANG A, LARFELDT J, et al. The comparative and combined effects of hydrogen addition on the laminar burning velocities of methane and its blends with ethane and propane[J]. Fuel, 2017, 189:369-376. doi: 10.1016/j.fuel.2016.10.103
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  457
  • HTML全文浏览量:  189
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-01
  • 修回日期:  2019-10-21
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日