留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乘波布局高焓激波风洞测热试验研究

王晓朋 张陈安 翟建 王发民 叶正寅

王晓朋, 张陈安, 翟建, 等. 乘波布局高焓激波风洞测热试验研究[J]. 实验流体力学, 2019, 33(4): 52-57. doi: 10.11729/syltlx20190080
引用本文: 王晓朋, 张陈安, 翟建, 等. 乘波布局高焓激波风洞测热试验研究[J]. 实验流体力学, 2019, 33(4): 52-57. doi: 10.11729/syltlx20190080
Wang Xiaopeng, Zhang Chen'an, Zhai Jian, et al. Experimental study on the aero-heating characteristics of waverider in the high enthalpy shock wave tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 52-57. doi: 10.11729/syltlx20190080
Citation: Wang Xiaopeng, Zhang Chen'an, Zhai Jian, et al. Experimental study on the aero-heating characteristics of waverider in the high enthalpy shock wave tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 52-57. doi: 10.11729/syltlx20190080

乘波布局高焓激波风洞测热试验研究

doi: 10.11729/syltlx20190080
基金项目: 

中国科学院战略性先导专项 XDA17030100

详细信息
    作者简介:

    王晓朋(1986-), 男, 河南许昌人, 博士研究生。研究方向:高超声速飞行器设计, 高超声速气动力/热试验。通信地址:北京市海淀区北四环西路15号中国科学院力学研究所(100190)。E-mail:378679333@qq.com

    通讯作者:

    张陈安, E-mail: zhch_a@imech.ac.cn

  • 中图分类号: V411.7

Experimental study on the aero-heating characteristics of waverider in the high enthalpy shock wave tunnel

  • 摘要: 以钝化锥导乘波体为研究对象,开展了高焓激波风洞测热试验以及高温化学非平衡气动加热数值验证,对乘波布局滑翔飞行器前缘线和下壁面热流分布特征进行了研究。结果表明:乘波布局飞行器表面热流主要集中于头部驻点及其附近的前缘小范围区域内;在0°~6°的迎角范围内,迎角的改变基本不会对前缘线热流产生太大影响,但会导致下壁面热流明显增加;而侧滑角即使在0°~4°的范围内变化,也将导致前缘线迎风一侧热流明显增加。
  • 图  1  乘波体气动布局

    Figure  1.  Aerodynamic configuration of the waverider

    图  2  模型及风洞安装

    Figure  2.  Test model and installation in JF-10

    图  3  传感器安装示意图

    Figure  3.  Sensors installation diagram

    图  4  JF-10高焓激波风洞结构示意图

    Figure  4.  JF-10 high enthalpy shock wave tunnel

    图  5  计算网格

    Figure  5.  Computational grids

    图  6  不同迎角时前缘线热流分布

    Figure  6.  The aero-heating distribution along the leading edge at different attack angles

    图  7  不同迎角时下壁面中线热流分布

    Figure  7.  The aero-heating distribution along the center line of the lower surface with different attack angles

    图  8  不同迎角时下壁面x1截面热流分布

    Figure  8.  The aero-heating distribution at the x1 cross section with different attack angles

    图  9  不同迎角时下壁面x2截面热流分布

    Figure  9.  The aero-heating distribution at the x2 cross section with different attack angles

    图  10  不同迎角时下壁面x3截面热流分布

    Figure  10.  The aero-heating distribution at the x3 cross section with different attack angles

    图  13  不同侧滑角时前缘线热流分布

    Figure  13.  The aero-heating distribution along the leading edge with different sideslip angles

    图  14  不同侧滑角时下壁面中线热流分布

    Figure  14.  The aero-heating distribution along the center line of the lower surface with different sideslip angles

    图  15  不同测滑角时下壁面x1截面热流分布

    Figure  15.  The aero-heating distribution at the x1 cross section with different sideslip angles

    图  16  不同测滑角时下壁面x2截面热流分布

    Figure  16.  The aero-heating distribution at the x2 cross section with different sideslip angles

    图  17  不同侧滑角时下壁面x3截面热流分布

    Figure  17.  The aero-heating distribution at the x3 cross section with different sideslip angles

    图  11  α=0°和8°时驻点热流云图

    Figure  11.  The aero-heating contours around the stagnation point when α=0° and 8°

    图  12  不同迎角和侧滑角时下壁面热流分布云图

    Figure  12.  The aero-heating contours at different angles

    图  18  β =0°和8°的驻点热流云图

    Figure  18.  The aero-heating contours around the stagnation point when β =0° and 8°

    表  1  来流条件

    Table  1.   Flow condition

    Parameters Value
    Ma 11.6
    p/Pa 118
    T/K 436
    cN 0
    cO 0.1588
    cN2 0.7454
    cO2 0.0528
    cNO 0.0430
    cNO+ 0
    ce- 0
    下载: 导出CSV
  • [1] 吕红庆.乘波体结构热响应及防护问题研究[D].哈尔滨: 哈尔滨工程大学, 2010. http://cdmd.cnki.com.cn/article/cdmd-10217-1012266032.htm

    Lyu H Q. Study of thermal response and protection for waverider structure[D]. Harbin: Harbin Engineering Univer-sity, 2010. http://cdmd.cnki.com.cn/article/cdmd-10217-1012266032.htm
    [2] 周印佳.乘波构型设计及表面热流计算[D].哈尔滨: 哈尔滨工程大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10217-1012517871.htm

    Zhou Y J. Design of waverider configuration and calculation of heating rates on the surface[D]. Harbin: Harbin Engineering University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10217-1012517871.htm
    [3] 刘建霞, 侯中喜, 陈小庆, 等.高超声速滑翔飞行器气动性能的数值模拟研究[J].国防科技大学学报, 2012, 34(4):22-27. doi: 10.3969/j.issn.1001-2486.2012.04.005

    Liu J X, Hou Z X, Chen X Q, et al. Numerical simulation on the aerodynamic performance of hypersonic glide vehicle[J]. Journal of National University of Defense Technology, 2012, 34(4):22-27. doi: 10.3969/j.issn.1001-2486.2012.04.005
    [4] Liu J X, Hou Z X, Chen X Q, et al. Experimental and numerical study on the aero-heating characteristics of blunted waverider[J]. Applied Thermal Engineering, 2013, 51(1-2):301-314. doi: 10.1016/j.applthermaleng.2012.09.026
    [5] 杨建龙, 刘猛, 阿嵘, 等.高超声速热化学非平衡对气动热环境影响[J].北京航空航天大学学报, 2017, 43(10):2063-2072. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201710015

    Yang J L, Liu M, A R. Influence of hypersonic thermo-chemical non-equilibrium on aerodynamic thermal environments[J]. Journal of Beijing University of Aeronautics and Astronau-tics, 2017, 43(10):2063-2072. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201710015
    [6] 董维中, 丁明松, 高铁锁, 等.热化学非平衡模型和表面温度对气动热计算影响分析[J].空气动力学学报, 2013, 31(6):692-698. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201306002

    Dong W Z, Ding M S, Gao T S, et al. The influence of thermo-chemical non-equilibrium model and surface temperature on heat transfer rate[J]. Acta Aerodynamica Sinica, 2013, 31(6):692-698. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201306002
    [7] Liu Z, Liu J, Ding F, et al. Effect of thermochemical non-equilibrium on the aerodynamics of an osculating-cone wave-rider under different angles of attack[J]. Acta Astronautica, 2017, 139:288-295. doi: 10.1016/j.actaastro.2017.07.013
    [8] Liu J, Li K, Liu W Q. High-temperature gas effects on aerodynamic characteristics of waverider[J]. Chinese Journal of Aeronautics, 2015, 28(1):57-65. doi: 10.1016/j.cja.2014.12.004
    [9] 杨恺, 原志超, 朱强华, 等.高超声速热化学非平衡钝体绕流数值模拟[J].推进技术, 2014, 35(12):1585-1591. http://d.old.wanfangdata.com.cn/Conference/8155863

    Yang K, Yuan Z C, Zhu Q H, el al. Numerical simulation of hypersonic thermochemical nonequilibrium blunt body flows[J]. Journal of Propulsion Technology, 2014, 35(12):1585-1591. http://d.old.wanfangdata.com.cn/Conference/8155863
    [10] Pezzella G, Votta R. Finite rate of chemistry effects on the high altitude aerodynamics of an apollo-shaped reentry capsule[R]. AIAA-2009-7306, 2009.
    [11] Gao Z X, Jiang C W, Lee C H. Aero-heating study of hypersonic chemical nonequilibrium flows around a reentry blunt body[R]. AIAA-2014-4415, 2014.
    [12] Hao J, Wang J Y, Lee C H. Numerical study of hypersonic flows over reentry configurations with different chemical nonequilibrium models[J]. Acta Astronautica, 2016, 126:1-10. doi: 10.1016/j.actaastro.2016.04.014
    [13] Suzuki K, Abe T. Thermochemical nonequilibrium viscous shock-layer analysis for a Mars aerocapture vehicle[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(4):773-780. doi: 10.2514/3.611
    [14] Inger G R. Nonequilibrium boundary-layer effects on the aerodynamic heating of hypersonic waverider vehicles[J]. Journal of Thermophysics and Heat Transfer, 1995, 9(4):595-604. doi: 10.2514/3.713
    [15] Inger G R. Non-equilibrium boundary layer effects on the aerodynamic heating of hypersonic vehicles[J]. Acta Astronau-tica, 1995, 36(4):205-216. doi: 10.1016/0094-5765(95)00101-5
    [16] Starkey R P. Design of waverider based re-entry vehicles[R]. AIAA-2005-3390, 2005.
    [17] 曾卫刚, 李维东, 王发民.平衡气体对乘波体气动力/热特性影响[J].空气动力学学报, 2012, 30(5):566-572, 605. http://www.cqvip.com/QK/95593X/201205/43755638.html

    Zeng W G, Li W D, Wang F M. Equilibrium gas effects on aerodynamic and aerothermal characteristics of waveriders[J]. Acta Aerodynamica Sinica, 2012, 30(5):566-572, 605. http://www.cqvip.com/QK/95593X/201205/43755638.html
    [18] 耿永兵, 刘宏, 雷麦芳, 等.高升阻比乘波构型优化设计[J].力学学报, 2006, 38(4):540-546. doi: 10.3321/j.issn:0459-1879.2006.04.014

    Geng Y B, Liu H, Lei M F. Optimized design of waverider with high lift over drag ratio[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4):540-546. doi: 10.3321/j.issn:0459-1879.2006.04.014
    [19] 聂春生, 李宇, 黄建栋, 等.高超声速非平衡气动加热试验及数值分析研究[J].中国科学:技术科学, 2018, 48(8):845-852. http://www.cnki.com.cn/Article/CJFDTotal-JEXK201808004.htm

    Nie C S, Li Y, Huang J D, et al. Test of aero-heating in hypersonic non-equilibrium flow and numerical simulation study[J]. Scientia Sinica:Technologica, 2018, 48(8):845-852. http://www.cnki.com.cn/Article/CJFDTotal-JEXK201808004.htm
    [20] Gupta R N, Yos J M, Thompson R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000K[R]. NASA-TM-101528, 1990.
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  92
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-24
  • 修回日期:  2019-07-17
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日