留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双目立体视觉的直升机旋翼桨叶位移变形测量方法

左承林 马军 岳廷瑞 宋晋 王勋年

左承林, 马军, 岳廷瑞, 等. 基于双目立体视觉的直升机旋翼桨叶位移变形测量方法[J]. 实验流体力学, 2020, 34(1): 87-95. doi: 10.11729/syltlx20190071
引用本文: 左承林, 马军, 岳廷瑞, 等. 基于双目立体视觉的直升机旋翼桨叶位移变形测量方法[J]. 实验流体力学, 2020, 34(1): 87-95. doi: 10.11729/syltlx20190071
ZUO Chenglin, MA Jun, YUE Tingrui, et al. Displacement and deformation measurements of helicopter rotor blades based on binocular stereo vision[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 87-95. doi: 10.11729/syltlx20190071
Citation: ZUO Chenglin, MA Jun, YUE Tingrui, et al. Displacement and deformation measurements of helicopter rotor blades based on binocular stereo vision[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 87-95. doi: 10.11729/syltlx20190071

基于双目立体视觉的直升机旋翼桨叶位移变形测量方法

doi: 10.11729/syltlx20190071
基金项目: 

空气动力学国家重点实验室研究基金 SKLA2017-2-1

详细信息
    作者简介:

    左承林(1987-), 男, 四川绵阳人, 博士, 工程师。研究方向:计算机视觉, 非接触测量。通信地址:四川省绵阳市涪城区剑门路西段278号(621000)。E-mail:zuochenglin3700@163.com

    通讯作者:

    马军, E-mail:292384225@qq.com

  • 中图分类号: V211.71

Displacement and deformation measurements of helicopter rotor blades based on binocular stereo vision

  • 摘要: 为实现直升机旋翼桨叶位移变形的非接触测量,提出了基于双目立体视觉的三维测量方法。采用编码标记方式,在旋翼桨叶表面粘贴具有唯一编码信息的标记点,以高频激光器提供纳秒级瞬态照明,同步触发高速CCD相机采集桨叶瞬态图像,基于双目立体视觉原理计算标记点的三维坐标,进而计算得到旋翼桨叶的位移变形参数。试验结果表明:该测量方法的测量精度小于0.1 mm,测量准度小于0.3 mm,可满足直升机旋翼桨叶位移变形的高精度测量需求。
  • 图  1  双目成像系统结构

    Figure  1.  Structure of binocular imaging system

    图  2  瞬态成像原理

    Figure  2.  Principle of transient imaging

    图  3  双目立体视觉原理

    Figure  3.  Principle of binocular stereo vision

    图  4  编码标记点

    Figure  4.  Coded targets

    图  5  标记点边缘检测

    Figure  5.  Edge detection of coded targets

    图  6  编码环采样

    Figure  6.  Sampling of coded ring

    图  7  Φ2 m刚性旋翼试验台验证试验

    Figure  7.  Test on Φ2 meter rigid rotor platform

    图  8  旋翼桨叶合成图像

    Figure  8.  Composite image of rotor blade

    图  9  棋盘格标定板

    Figure  9.  Checkerboard calibration board

    图  10  编码标记点检测识别结果

    Figure  10.  Detection and recognition results of coded targets

    图  11  编码标记点三维坐标计算结果

    Figure  11.  Three-dimensional coordinates calculation results of coded targets

    图  12  旋翼桨叶动态三维重构结果

    Figure  12.  Dynamic three-dimensional reconstruction of rotor blade

    图  13  桨尖挥舞位移量

    Figure  13.  Displacements of the blade tip

    图  14  桨根总距变化

    Figure  14.  Changes on pitch angle of the blade root

    图  15  桨尖总距变化

    Figure  15.  Changes on pitch angle of the blade tip

    表  1  左相机内部参数标定结果

    Table  1.   Internal calibration results of the left camera

    标定参数 标定结果
    等效焦距(fu, fv ) (2622.916, 2622.923)
    光学中心(cu, cv ) (540.045, 528.145)
    不垂直因子s 0
    径向畸变系数(k1, k2) (-0.159, 0.435)
    重投影误差e 0.232
    下载: 导出CSV

    表  2  右相机内部参数标定结果

    Table  2.   Internal calibration results of the right camera

    标定参数 标定结果
    等效焦距(fu, fv ) (2621.891, 2622.130)
    光学中心(cu, cv ) (539.095, 498.173)
    不垂直因子s 0
    径向畸变系数(k1, k2) (-0.172, 0.932)
    重投影误差e 0.226
    下载: 导出CSV

    表  3  双目成像系统外部参数标定结果

    Table  3.   External calibration results of the binocular imaging system

    标定参数 标定结果
    旋转矩阵R
    平移向量T (914.501 34.923 250.291)
    下载: 导出CSV

    表  4  测量精准度

    Table  4.   Measuring accuracy

    转速
    /(r·min-1)
    控制总距
    /(°)
    测量精度
    σ1/mm
    测量准度
    σ2/mm
    1300 0 0.079 0.152
    6 0.072 0.170
    10 0.084 0.178
    1860 0 0.072 0.149
    6 0.084 0.199
    10 0.093 0.232
    下载: 导出CSV

    表  5  桨尖平均挥舞位移量

    Table  5.   Average displacements of the blade tip

    转速/(r·min-1) 控制总距/(°) 平均挥舞位移量/mm
    1300 0 -11.99
    6 -6.76
    10 1.00
    1860 0 -17.03
    6 -10.44
    10 -1.28
    下载: 导出CSV

    表  6  桨根、桨尖平均总距

    Table  6.   Average pitch angle of the blade root and tip

    转速
    /(r·min-1)
    控制总距
    /(°)
    桨根平均
    总距/(°)
    桨尖平均
    总距/(°)
    1300 0 -1.72 -5.70
    6 4.22 0.68
    10 8.15 5.05
    1860 0 -1.41 -5.39
    6 4.51 1.24
    10 8.52 5.56
    下载: 导出CSV

    表  7  桨根、桨尖总距变化量

    Table  7.   Changes on pitch angle of the blade root and tip

    转速
    /(r·min-1)
    控制总距
    /(°)
    桨根平均
    总距变化量/(°)
    桨尖平均
    总距变化量/(°)
    1300 6 5.94 6.38
    10 9.87 10.75
    1860 6 5.92 6.63
    10 9.93 10.95
    下载: 导出CSV
  • [1] 曹义华.现代直升机旋翼空气动力学[M].北京: 北京航空航天大学出版社, 2015.

    CAO Y H. Modern helicopter rotor aerodynamics[M]. Beijing: Beihang University Press, 2015.
    [2] 黄明其.直升机风洞试验[M].北京: 国防工业出版社, 2014.

    HUANG M Q. Helicopter wind tunnel test[M]. Beijing: National Defense Industry Press, 2014.
    [3] 陈文, 夏品奇.采用光纤传感测量的直升机旋翼桨叶分布载荷识别[J].振动工程学报, 2009, 22(2): 183-187. doi: 10.3969/j.issn.1004-4523.2009.02.012

    CHEN W, XIA P Q. Identification of helicopter rotor blade distributed loads by using fiber optic sensor measurement[J]. Journal of Vibration Engineering, 2009, 22(2): 183-187. doi: 10.3969/j.issn.1004-4523.2009.02.012
    [4] SCHNEIDER O, VAN DER WALL B G, PENGEL K. HART II blade motion measured by Stereo Pattern Recognition(SPR)[C]//Proc of the American Helicopter Society 59th Annual Forum. 2003.
    [5] SCHNEIDER O, VAN DER WALL B G. Final analysis of HART II blade deflection measurements[C]//Proc of the 29th European Rotorcraft Forum. 2003.
    [6] SCHNEIDER O. Analysis of SPR measurements from HART II[J]. Aerospace Science and Technology, 2005, 9(5): 409-420. doi: 10.1016/j.ast.2005.01.013
    [7] STRAUB F K, ANAND V R, LAU B H, et al. Wind tunnel test of the SMART active flap rotor[J]. Journal of the American Helicopter Society, 2018, 63(1): 1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdcd38ff9b895c294442c8c40dffd1b
    [8] OLSON L E, ABREGO A, BARROWS D, et al. Blade deflection measurements of a full-scale UH-60A rotor system[C]//Proc of the American Helicopter Society Aeromechanics Specialist Conference. 2010.
    [9] BARROWS D, BURNER A W, ABREGO A, et al. Blade displacement measurements of the full-scale UH-60A airloads rotor[C]//Proc of the 29th AIAA Applied Aerodynamics Conference. 2011.
    [10] ABREGO A, OLSON L E, ROMANDER E A, et al. Blade displacement measurement technique applied to a full-scale rotor test[C]//Proc of the American Helicopter Society 68th Annual Forum. 2012.
    [11] ROMANDER E A, MEYN L, BARROWS D, et al. Blade motion correlation for the full-scale UH-60A airloads rotor[C]//Proc of the AHS 5th Decennial Aeromechanics Specialists' Conference. 2014.
    [12] BLEDRON R T, LEE-RAUSCH E M. Blade displacement predictions for the full-scale UH-60A airloads rotor[C]//Proc of the 70th American Helicopter Society (AHS) Annual Forum. 2014.
    [13] ABREGO A, MEYN L, BURNER A W, et al. Summary of full-scale blade displacement measurements of the UH-60A airloads rotor[C]//Proc of the AHS Technical Meeting on Aeromechanics Design for Vertical Lift. 2016.
    [14] LAWSON M S, SIROHI J. Measurement of deformation of rotating blades using digital image correlation[C]//Proc of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2011.
    [15] SIROHI J, LAWSON M S. Measurement of helicopter rotor blade deformation using digital image correlation[J]. Optical Engineering, 2012, 51(4): 1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c91044f081f16ab316dcd3f6f284ad9f
    [16] SICARD J, SIROHI J. Modeling of the large torsional deformation of an extremely flexible rotor in hover[J]. AIAA Journal, 2014, 52(8): 1604-1615. doi: 10.2514/1.J052617
    [17] SOUSA P J, BARROS F, TAVARES P J, et al. Displacement measurement and shape acquisition of an RC helicopter blade using digital image correlation[C]//Proc of the International Conference on Structural Integrity. 2017.
    [18] UEHARA D, CAMERON C G, SIROHI J. Deformation measurement and modal identification of an extremely flexible rotor blade[C]//Proc of the 6th Asian-Australian Rotorcraft Forum. 2017.
    [19] 陈洞滨, 熊邦书, 黄建萍, 等.基于标记点的直升机旋翼动态三维测量方法[J].半导体光电, 2013, 34(5): 904-908. http://d.old.wanfangdata.com.cn/Thesis/D491449

    CHEN D B, XIONG B S, HUANG J P, et al. Dynamic 3D-measurement method of helicopter rotor based on marked points[J]. Semiconductor Optoelectronics, 2013, 34(5): 904-908. http://d.old.wanfangdata.com.cn/Thesis/D491449
    [20] 熊邦书, 熊京京, 黄建萍, 等.基于双目视觉的直升机旋翼桨叶共锥度检测法[J].半导体光电, 2014, 35(5): 924-927. http://d.old.wanfangdata.com.cn/Periodical/bdtgd201405041

    XIONG B S, XIONG J J, HUANG J P, et al. Pyramid angle detection method of helicopter rotor blade based on binocular vision[J]. Semiconductor Optoelectronics, 2014, 35(5): 924-927. http://d.old.wanfangdata.com.cn/Periodical/bdtgd201405041
    [21] 欧巧凤, 赵平均, 熊邦书, 等.基于立体视觉的旋翼共锥度动态测量系统精度分析[J].仪器仪表学报, 2015, 36(8): 1692-1698. doi: 10.3969/j.issn.0254-3087.2015.08.002

    OU Q F, ZHAO P J, XIONG B S, et al. Accuracy analysis of the measuring instrument for taper angle of running rotor blades based on stereo vision[J]. Chinese Journal of Scientific Instrument, 2015, 36(8): 1692-1698. doi: 10.3969/j.issn.0254-3087.2015.08.002
    [22] 熊邦书, 熊奎, 李新民, 等.基于双目视觉的直升机旋翼桨叶挥舞角测量[J].测控技术, 2016, 35(1): 34-37. doi: 10.3969/j.issn.1000-8829.2016.01.009

    XIONG B S, XIONG K, LI X M, et al. Flapping angle measurement of helicopter rotor blade based on binocular vision[J]. Measurement & Control Technology, 2016, 35(1): 34-37. doi: 10.3969/j.issn.1000-8829.2016.01.009
    [23] 熊邦书, 汪建勇, 黄建萍, 等.基于CUDA的直升机旋翼桨叶挥舞角快速测量方法[J].测控技术, 2016, 35(6): 30-32. doi: 10.3969/j.issn.1000-8829.2016.06.008

    XIONG B S, WANG J Y, HUANG J P, et al. Fast measure-ment method of helicopter rotor blade flapping angle based on CUDA[J]. Measurement & Control Technology, 2016, 35(6): 30-32. doi: 10.3969/j.issn.1000-8829.2016.06.008
    [24] 吴国宝, 吴志刚, 易晖, 等.基于三维数字影像的直升机旋翼运动参数测量方法研究[J].光电技术应用, 2016, 31(2): 76-80. doi: 10.3969/j.issn.1673-1255.2016.02.019

    WU G B, WU Z G, YI H, et al. Research on motion parameter measurement of helicopter rotor blade based on three-dimensional digital image[J]. Electro-Optic Technology Application, 2016, 31(2): 76-80. doi: 10.3969/j.issn.1673-1255.2016.02.019
    [25] 韩涛, 吴衡.基于立体视觉的直升机旋翼桨叶三维动态变形测量[J].科学技术与工程, 2018, 18(8): 322-327. doi: 10.3969/j.issn.1671-1815.2018.08.054

    HAN T, WU H. 3D dynamic deformation measurement of helicopter rotor blades based on stereo vision[J]. Science Technology and Engineering, 2018, 18(8): 322-327. doi: 10.3969/j.issn.1671-1815.2018.08.054
    [26] ABDEL-AZIZ Y I, KARARA H M, et al. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry[J]. Photogrammetric Engineering and Remote Sensing, 2015, 81(2): 103-107. doi: 10.14358/PERS.81.2.103
    [27] TSAI R Y. An efficient and accurate camera calibration technique for 3D machine vision[C]//Proc of the Computer Vision and Pattern Recognition. 1986.
    [28] ZHANG Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. doi: 10.1109/34.888718
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  113
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-11
  • 修回日期:  2019-07-12
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日