留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温敏漆校准及图像后处理方法研究

刘祥 熊健 马护生 周强 陈柳生 王红彪 黄辉 陈植

刘祥, 熊健, 马护生, 等. 温敏漆校准及图像后处理方法研究[J]. 实验流体力学, 2020, 34(4): 53-61. doi: 10.11729/syltlx20190054
引用本文: 刘祥, 熊健, 马护生, 等. 温敏漆校准及图像后处理方法研究[J]. 实验流体力学, 2020, 34(4): 53-61. doi: 10.11729/syltlx20190054
LIU Xiang, XIONG Jian, MA Husheng, et al. The calibration and image post-processing method research of temperature-sensitive paint[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 53-61. doi: 10.11729/syltlx20190054
Citation: LIU Xiang, XIONG Jian, MA Husheng, et al. The calibration and image post-processing method research of temperature-sensitive paint[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 53-61. doi: 10.11729/syltlx20190054

温敏漆校准及图像后处理方法研究

doi: 10.11729/syltlx20190054
基金项目: 

国家自然科学基金 11172316

详细信息
    作者简介:

    刘祥(1980-), 男, 安徽阜阳人, 高级工程师。研究方向:光学测量技术。通信地址:四川省绵阳市涪城区二环路南段6号(621000)。E-mail:liuxiang_cardc@163.com

    通讯作者:

    刘祥, E-mail:liuxiang_cardc@163.com

  • 中图分类号: V211.7

The calibration and image post-processing method research of temperature-sensitive paint

  • 摘要: 涂料校准误差是温敏漆实验技术中的重要误差源。针对国产615/EP配方温敏漆实施校准实验,系统研究了校准过程中涉及的CCD曝光时间,图像平均幅数,噪点的强度、体积和数量,图像清晰度和模数转换位数等技术参数对校准精准度的影响。研究结果表明:噪点的强度、体积和数量对涂料校准精准度影响很大。在噪点数量少、强度弱的取图区域中,图像清晰度对校准精准度影响很小,单幅图像即可保证校准精准度的要求。为了获得较高的校准精准度,对于滨松ORCA-R2型CCD相机,建议采集图像灰度值大于相机满井值的32%,同时要求温敏漆风洞实验与校准实验中采集图像的位数保持一致。
  • 图  1  TSP校准实验装置示意图

    Figure  1.  The sketch map of TSP calibration equipment

    图  2  TSP校准图像后处理流程示意图

    Figure  2.  The schematic diagram of TSP calibration image post-processing

    图  3  615/EP温敏漆配方校准曲线

    Figure  3.  The calibration curves of 615/EP TSP

    图  4  PSP/TSP校准系统设计方案原理图

    Figure  4.  The sketch map of PSP/TSP calibration system

    图  5  PSP/TSP校准系统控制柜实物图

    Figure  5.  The photo of PSP/TSP calibration system

    图  6  TSP校准软件界面

    Figure  6.  TSP calibration software

    图  7  TSP校准软件拟合曲线模块

    Figure  7.  The curve fitting module of TSP calibration software

    图  8  样片区域平均像素灰度值随时间的变化曲线

    Figure  8.  The curve of average pixel gray value varying with time

    图  9  615/EP涂料7次重复性校准结果

    Figure  9.  The repeatability calibration curves of 615/EP TSP

    图  10  615/EP涂料7次重复性校准误差带

    Figure  10.  The repeatability calibration error band of 615/EP TSP

    图  11  不同曝光时间下的样片图像光强(参考状态)

    Figure  11.  The sample image intensity for different CCD exposure times (reference condition)

    图  12  不同曝光时间之间的校准差量曲线

    Figure  12.  The calibration differential curves for different CCD exposure times

    图  13  校准取图区域

    Figure  13.  The calibration image region

    图  14  不同噪点水平取图区域的校准差量

    Figure  14.  The calibration differential curves for different noise levels

    图  15  噪点区域与基本状态区域校准结果对比

    Figure  15.  Comparison of the TSP calibration curves in the noise area and the basic state area

    图  16  不同平均图像数之间的校准差量曲线

    Figure  16.  The calibration differential curves for different image average quantities

    图  17  清晰图像和模糊图像

    Figure  17.  Sharp image and blurry image

    图  18  不同图像清晰度的校准差量

    Figure  18.  The calibration differential curves for different image definition

    图  19  不同模数转换位数的校准差量

    Figure  19.  The calibration differential curves for different A/D conversion digit

  • [1] KOLODNER P, TYSON J A. Microscopic fluorescent imaging of surface temperature profiles with 0.01℃ resolution[J]. Applied Physics Letters, 1982, 40(9):782-784. doi: 10.1063/1.93258
    [2] KOLODNER P, TYSON J A. Remote thermal imaging with 0.7μm spatial resolution using temperature-dependent fluorescent thinflims[J]. Applied Physics Letters, 1983, 42(1):117-119. doi: 10.1063/1.93766
    [3] LANG W, GARDNER A D, MARIAPPAN S, et al. Boundary-layer transition on a rotor blade measured by temperature-sensitive paint, thermal imaging and imagederotation[J]. Experiments in Fluids, 2015, 56(6):1-14. doi: 10.1007/s00348-015-1988-5
    [4] KLEIN C, HENNE U. Combination of temperature sensitive paint and carbon nanotubes for transition detection[R]. AIAA 2015-1558, 2015.
    [5] HORAGIRI T, NAGAI H, SACHS W, et al. Development of temperature-sensitive paint with high performance and responsibility for aerodynamic heating measurement[R]. AIAA 2014-1408, 2014.
    [6] NAGAI H, OHMI S, ASAI K, et al. Effect of temperature-sensitive-paint thickness on global heat transfer measurement in hypersonicflow[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(3):373-381. doi: 10.2514/1.34152
    [7] NAGAI H, SWAMURA R, ASAI K. Experimental study of heat transfer measurement using temperature-sensitive paint for high-temperature application in hypersonic flow[R]. AIAA 2011-850, 2011.
    [8] OZAWA H, LAURENCE S J, SCHRAMM J M, et al. Fast-response temperature-sensitive-paint measurements on a hypersonic transitioncone[J]. Experiments in Fluids, 2014, 56(1):1-13.
    [9] WATKINS A N, LEIGHTY B D, LIPFORD W E, et al. Pressure-and temperature-sensitive paint at 0.3-m transonic cryogenic tunnel[R]. NASA/TM-2015-218801, 2015.
    [10] KURITS I, LEWIS M J. Global temperature-sensitive paint system for heat transfer measurements in long-duration hypersonicflows[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(2):256-266. doi: 10.2514/1.39926
    [11] KURITS I, NORRIS J, BHANDARI P. Temperature-sensitive paint calibration methodology developed at AEDC tunnel 9[R]. AIAA 2011-851, 2011.
    [12] NAGAYAMA T, NAGAI H, TANNO H, et al. Visualization of hypersonic boundary layer transition on elliptic cone in high enthalpy shock tunnel with temperature-sensitive paint[R]. AIAA 2016-0358, 2016.
    [13] FEY U, EGAMI Y, ENGLER R. High Reynolds number transition detection by means of temperaturesensitive paint[R]. AIAA 2006-514, 2006.
    [14] EGAMI Y, FEY U, QUEST J. Development of new two-component TSP for cryogenic testing[R]. AIAA 2007-1062, 2007.
    [15] EGAMI Y, KLEIN C, HENNE U, et al. Development of a highly sensitive temperature-sensitive paint for measurements under ambient (0-60℃) conditions[R]. AIAA 2009-1075, 2009.
    [16] KLEIN C. Development of a highly sensitive temperature-sensitive paint for measurements under cryogenic temperatures (100~160 K) conditions[R]. AIAA 2016-0650, 2016.
    [17] VLADIMIR M, ANATOLY O, VLADIMIR R. Temperature sensitive paint (TSP) for heat transfer measurement in short duration wind tunnels[C]//Proc of International Congress on Instrumentation in Aerospace Simulation Facilities. 2003.
    [18] 董艳丽, 孙晶, 范薇, 等.发光温敏漆的制备及其温度猝灭特性研究[J].光学与光电技术, 2011, 9(6):93-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxygdjs201106022

    DONG Y L, SUN J, FAN W, et al. Study on temperature quenching characteristics and preparation of luminescent temperature sensitive paint[J]. Optics & Optoelectronic Technology, 2011, 9(6):93-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxygdjs201106022
    [19] 尚金奎, 王鹏, 陈柳生, 等. TSP技术在转捩检测中的应用研究[J].空气动力学学报, 2015, 33(4):464-469. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201504004

    SHANG J K, WANG P, CHEN L S, et al. Application research of TSP technique in transitiondetection[J]. Acta Aerodynamica Sinica, 2015, 33(4):464-469. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201504004
    [20] 张扣立, 常雨, 孔荣宗, 等.温敏漆技术及其在边界层转捩测量中的应用[J].宇航学报, 2013, 34(6):860-865. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhxb201306017

    ZHANG K L, CHANG Y, KONG R Z, et al. Temperature sensitive paint technique and its application in measurement of boundary layertransition[J]. Journal of Astronautics, 2013, 34(6):860-865. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhxb201306017
  • 加载中
图(19)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  97
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-25
  • 修回日期:  2020-06-02
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日