留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆弧激波缓聚点火及后续燃烧传播

侯自豪 杨剑挺 朱雨建 杨基明

侯自豪, 杨剑挺, 朱雨建, 等. 圆弧激波缓聚点火及后续燃烧传播[J]. 实验流体力学, 2019, 33(5): 10-17. doi: 10.11729/syltlx20190043
引用本文: 侯自豪, 杨剑挺, 朱雨建, 等. 圆弧激波缓聚点火及后续燃烧传播[J]. 实验流体力学, 2019, 33(5): 10-17. doi: 10.11729/syltlx20190043
Hou Zihao, Yang Jianting, Zhu Yujian, et al. Self-ignition caused by an imploding arc-shaped shock wave and the subsequent propagation of combustion[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 10-17. doi: 10.11729/syltlx20190043
Citation: Hou Zihao, Yang Jianting, Zhu Yujian, et al. Self-ignition caused by an imploding arc-shaped shock wave and the subsequent propagation of combustion[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 10-17. doi: 10.11729/syltlx20190043

圆弧激波缓聚点火及后续燃烧传播

doi: 10.11729/syltlx20190043
基金项目: 

国家自然科学基金项目 11132010

详细信息
    作者简介:

    侯自豪(1994-), 男, 河南驻马店人, 硕士研究生。研究方向:汇聚激波诱导自点火。通信地址:合肥市中国科学技术大学近代力学系(230027)。E-mail:houzihao@mail.ustc.edu.cn

    通讯作者:

    朱雨建, E-mail: yujianrd@ustc.edu.cn

  • 中图分类号: V211.751

Self-ignition caused by an imploding arc-shaped shock wave and the subsequent propagation of combustion

  • 摘要: 采用激波管实验和准一维数值模拟的方法,对预混可燃气体中圆弧汇聚激波的自点火现象及后续燃烧波的传播特性进行研究。其中圆弧汇聚激波由平面运动激波通过精确设计的弧形过渡管段转变得到。研究表明:收缩段中圆弧汇聚激波波后的非均匀梯度环境由激波在平直段、弧形过渡段和扇形收缩段中传播所分别诱导的3个梯度区共同构成。随着圆弧汇聚激波的不断增强,圆弧激波后某处首先形成一个无激波的温和反应区。该反应区逆流锋面的初期运动速度远超Chapman-Jouguet(CJ)爆轰波速,而反应产物区流动则呈现出一定弱爆轰波特征。进一步分析发现,该反应锋面本质上是一种"自发反应波"(spontaneous reaction wave),而非常规意义上的动力学波,其速度与汇聚激波波后气流点火时间梯度的倒数吻合。而后,反应区的扩张速度很快降至CJ爆轰波速以下,伴随反应锋面附近激波的产生以及激波-火焰复合结构的形成。激波-火焰结构最终加速演变为反向传播的爆轰波。在一定的条件下,由于入射激波转变过程和汇聚所构造的特定点火环境,自发反应波可再次赶超爆轰波,成为新的燃烧波前;而当自发反应波速度再次低于CJ爆轰波速时,它将再次转变为爆轰波;在此过程中,原先的爆轰波阵面蜕变为反应产物中传播的激波。
  • 图  1  实验平台示意图

    Figure  1.  Schematic of experimental plat form

    图  2  实验段示意图

    Figure  2.  Schematic of the test section

    图  3  汇聚角度8°数值计算域

    Figure  3.  Computational zone for an 8° convergent channel

    图  4  圆弧激波汇聚过程冷态流动纹影实验结果(气体A、初始压力4.00 kPa、入射平面激波马赫数3.15)

    Figure  4.  Schlieren pictures of the nonreactive shock converging process

    图  5  圆弧汇聚激波诱导自点火纹影实验结果(气体B、初始压力4.00 kPa、入射平面激波马赫数3.15)

    Figure  5.  Schlieren pictures of self-ignition induced by imploding arc-shaped shock wave

    图  6  实验和数值纹影中入射激波和反射激波轨迹及温度等值分布(气体B、初始压力4.00 kPa、入射平面激波马赫数3.15)

    Figure  6.  Experimental and numerical trajectories of incident shock and reflected shock and x-t diagram of the temperature contour distribution

    图  7  空间压力、密度、温度分布的演变过程

    Figure  7.  Evolution processes of spatial pressure、density and temperature distribution

    图  8  实验和数值纹影中激波和燃烧波轨迹(气体B、初始压力4.00 kPa、入射平面激波马赫数3.15)

    Figure  8.  Experimental and numerical trajectories of shock waves and combustion waves

    图  9  空间压力、密度、温度、自由基OH分布演变过程

    Figure  9.  Evolution process of spatial pressure、density and temperature free radical OH distribution

    图  10  “相波”和数值纹影中燃烧波传播轨迹的对比

    Figure  10.  Comparison of trajectories of "spontaneous reaction wave" and detonation wave

    图  11  流动系统中“相波”与实际燃烧波速度对比

    Figure  11.  Comparison of speeds of "spontaneous reaction wave" and detonation wave

    表  1  实验气体组成和属性

    Table  1.   Compositions and properties of test gases

    Label A B
    Component 27.27%H2+72.73 %N2 28.38%H2+6.76%O2+64.86%N2
    Reactive No Yes
    Molar mass/(g·mol-1) 20.9 20.9
    Specific heat ratio 1.4 1.4
    Sound speed at room temperature/(m·s-1) 407.4 407.4
    下载: 导出CSV
  • [1] Liu Y, Wang L, Xiao B G, et al. Hysteresis phenomenon of the oblique detonation wave[J]. Combustion and Flame, 2018, 192:170-179. doi: 10.1016/j.combustflame.2018.02.010
    [2] Yao S B, Liu M, Wang J P. Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine[J]. Combustion Science and Techno-logy, 2015, 187(12):1867-1878. doi: 10.1080/00102202.2015.1067202
    [3] Lee J H S. The detonation phenomenon[M]. Camridge:Cambridge University Press, 2008.
    [4] Hanson R K, Davidson D F. Recent advances in laser absorption and shock tube methods for studies of combustion chemistry[J]. Progress in Energy and Combustion Science, 2014, 44(5):103-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=32a48adc67662fe720c9b40098405349
    [5] Kéromnès A, Metcalfe W K, Heufer K A, et al. An experi-mental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures[J]. Combustion and Flame, 2013, 160(6):995-1011. doi: 10.1016/j.combustflame.2013.01.001
    [6] Hashemi H, Christensen J M, Gersen S, et al. Hydrogen oxidation at high pressure and intermediate temperatures:Experiments and kinetic modeling[J]. Proceedings of the Combustion Institute, 2015, 35(1):553-560. doi: 10.1016/j.proci.2014.05.101
    [7] Koroglu B, Pryor O M, Lopez J, et al. Shock tube ignition delay times and methane time-histories measurements during excess CO2 diluted oxy-methane combustion[J]. Combustion and flame, 2016, 164:152-163. doi: 10.1016/j.combustflame.2015.11.011
    [8] Boeck L R, Mével R, Sattelmayer T. Models for shock-induced ignition evaluated by detailed chemical kinetics for hydrogen/air in the context of deflagration-to-detonation transition[J]. Journal of Loss Prevention in the Process Industries, 2017, 49:731-738. doi: 10.1016/j.jlp.2017.04.018
    [9] Chatelain K, Mével R, Menon S, et al. Ignition and chemical kinetics of acrolein-oxygen-argon mixtures behind reflected shock waves[J]. Fuel, 2014, 135:498-508. doi: 10.1016/j.fuel.2014.07.004
    [10] Yamashita H, Kasahara J, Sugiyama Y, et al. Visualization study of ignition modes behind bifurcated-reflected shock waves[J]. Combustion and Flame, 2012, 159(9):2954-2966. doi: 10.1016/j.combustflame.2012.05.009
    [11] Grogan K P, Ihme M. Regimes describing shock boundary layer interaction and ignition in shock tubes[J]. Proceedings of the Combustion Institute, 2017, 36(2):2927-2935. doi: 10.1016/j.proci.2016.06.078
    [12] Gelfand B E, Khomik S V, Bartenev A M, et al. Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture[J]. Shock Waves, 2000, 10(3):197-204. doi: 10.1007/s001930050007
    [13] Bartenev A M, Khomik S V, Gelfand B E, et al. Effect of reflection type on detonation initiation at shock-wave focusing[J]. Shock Waves, 2000, 10(3):205-215. doi: 10.1007/s001930050008
    [14] 滕宏辉, 王春, 邓博, 等.可燃气体中激波聚焦的点火特性[J].力学学报, 2007, 39(2):171-180. doi: 10.3321/j.issn:0459-1879.2007.02.005

    Teng H H, Wang C, Deng B, et al. Ignition characteristics of the shock wave focusing in combustive gases[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(2):171-180. doi: 10.3321/j.issn:0459-1879.2007.02.005
    [15] 何立明, 荣康, 曾昊, 等.激波聚焦及起爆爆震波的研究进展[J].推进技术, 2015, 36(10):1441-1458. http://d.old.wanfangdata.com.cn/Conference/8170218

    He L M, Rong K, Zeng H, et al. Advances in shock wave focusing and induced detonation initiation[J]. Journal of Propulsion Technology, 2015, 36(10):1441-1458. http://d.old.wanfangdata.com.cn/Conference/8170218
    [16] Zhai Z G, Liu C L, Qin F H, et al. Generation of cylindrical converging shock waves based on shock dynamics theory[J]. Physics of Fluids, 2010, 22(4):041701 doi: 10.1063/1.3392603
    [17] Yang J T, Zhu Y J, Yang J M. Self-ignition induced by cylindrically imploding shock adapting to a convergent channel[J]. Physics of Fluids, 2017, 29(3):031702. doi: 10.1063/1.4979135
    [18] Zel'Dovich Y B, Librovich V B, Makhviladze G M, et al. On the onset of detonation in a nonuniformly heated gas[J]. Journal of Applied Mechanics and Technical Physics, 1970, 11(2):264-270. http://cn.bing.com/academic/profile?id=3e411e70b62533e37b8fa81d5a1181e2&encoded=0&v=paper_preview&mkt=zh-cn
    [19] Oran E S, Weber J W Jr, Stefaniw E I, et al. A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model[J]. Combustion and Flame, 1998, 113(1-2):147-163. doi: 10.1016/S0010-2180(97)00218-6
    [20] Brown P N, Byrne G D, Hindmarsh A C. VODE:a variable coefficient ODE solver[J]. SIAM Journal of Scientific and Statistical Computing, 1989, 10(5):1038-1051. doi: 10.1137/0910062
    [21] Shi X F, Zhu Y J, Yang J M, et al. Mach stem deformation in pseudo-steady shock wave reflections[J]. Journal of Fluid Mechanics, 2019, 861:407-421. doi: 10.1017/jfm.2018.920
    [22] Kapila A K, Schwendeman D W, Quirk J J, et al. Mechanisms of detonation formation due to a temperature gradient[J]. Combustion Theory and Modelling, 2002, 6(4):553-594. doi: 10.1088/1364-7830/6/4/302
    [23] Kassoy D R. The Zeldovich spontaneous reaction wave propa-gation concept in the fast/modest heating limits[J]. Journal of Fluid Mechanics, 2016, 791:439-463. doi: 10.1017/jfm.2015.756
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  100
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-31
  • 修回日期:  2019-04-21
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日