留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

并联式TBCC排气系统模态转换过程的流场特性研究

汪丰 徐惊雷 汪阳生

汪丰, 徐惊雷, 汪阳生. 并联式TBCC排气系统模态转换过程的流场特性研究[J]. 实验流体力学, 2019, 33(3): 68-75. doi: 10.11729/syltlx20190037
引用本文: 汪丰, 徐惊雷, 汪阳生. 并联式TBCC排气系统模态转换过程的流场特性研究[J]. 实验流体力学, 2019, 33(3): 68-75. doi: 10.11729/syltlx20190037
Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. doi: 10.11729/syltlx20190037
Citation: Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. doi: 10.11729/syltlx20190037

并联式TBCC排气系统模态转换过程的流场特性研究

doi: 10.11729/syltlx20190037
基金项目: 

国家自然科学基金面上项目 11672346

国家重大研究计划项目 90916023

详细信息
    作者简介:

    汪丰(1994-), 男, 安徽芜湖人, 硕士研究生.研究方向:发动机内流气动力学.通信地址:江苏省南京市秦淮区御道街29号能源与动力学院201室(210016).E-mail:wangfengWuHu@outlook.com

    通讯作者:

    徐惊雷, E-mail: xujl@nuaa.edu.cn

  • 中图分类号: V231.3

Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process

  • 摘要: 为了研究并联式TBCC(Turbine Based Combined Cycle)排气系统在模态转换过程中出口流场的变化特性及其气动性能的变化规律,采用动网格等技术完成了某并联式TBCC组合排气系统在整个模态转换过程中的非定常数值模拟。同时,对该排气系统模态转换过程中若干工况时的冷流进行了风洞试验,并将试验与数值仿真结果进行比较。研究结果表明:模态转换过程中,并联式TBCC排气系统出口流场的波系结构十分复杂,分流板出口激波对排气系统的气动性能产生了一定影响;TBCC排气系统的推力系数始终保持在0.9以上,但其产生的升力变化较大;风洞试验获得的壁面压力分布及流场纹影与数值模拟结果吻合较好,从而证明了本文数值模拟方法的可行性。
  • 图  1  并联式TBCC排气系统风洞试验模型

    Figure  1.  Wind tunnel test model of the over-under TBCC exhaust system

    图  2  并联式TBCC排气系统实验模型剖面图

    Figure  2.  Profile of wind tunnel model of the over-under TBCC exhaust system

    图  3  并联式TBCC排气系统混合网格示意图

    Figure  3.  Hybrid grid schematic of over-under TBCC exhaust system

    图  4  模态转换过程中TBCC排气系统气流参数与喉道面积的变化规律

    Figure  4.  Variation of airflow parameters and throat area during mode transition process

    图  5  模态转换t=0.01~5.00s内TBCC排气系统出口流场的马赫数等值线图

    Figure  5.  Mach number contour of TBCC exhaust system in 0.01~5.00s during mode transition process

    图  6  模态转换t=0.01~5.00s内TBCC排气系统出口流场的纹影图

    Figure  6.  Schlieren images of TBCC exhaust system in t=0.01~5.00s during mode transition process

    图  7  t=0.01s时TBCC排气系统出口流场纹影与数值计算结果的比较

    Figure  7.  Comparison of schlieren and numerical results of TBCC exhaust system at t=0.01s

    图  8  t=0.01s时涡轮流道上膨胀面沿程静压分布

    Figure  8.  Static pressure distribution along ramp in turbine channel at t=0.01s

    图  9  模态转换t=5.00~12.00s内排气系统出口流场的马赫数等值线图

    Figure  9.  Mach number contour of TBCC exhaust system in t=5.00~12.00s during mode transition process

    图  11  t=9.50s冲压流道上壁面沿程压力分布

    Figure  11.  Static pressure distribution along the upwall of ramp channel at t=9.50s

    图  10  t=10.00s时TBCC排气系统出口流场的波系结构

    Figure  10.  Wave structure of TBCC exhaust system at t=10.00s

    图  12  涡轮流道上膨胀面沿程压力分布随时间的变化

    Figure  12.  Variation of static pressure distribution along ramp in turbine channel with time

    图  13  t=24.00s时TBCC排气系统出口流场

    Figure  13.  Exit flow field of TBCC exhaust system at t=24.00s

    图  14  模态转换过程TBCC排气系统轴向推力系数的变化曲线

    Figure  14.  Curves of axial thrust coefficient of TBCC exhaust system during mode transition process

    图  15  模态转换过程TBCC排气系统升力的变化曲线

    Figure  15.  Curves of the lift of TBCC exhaust system during mode transition process

    表  1  并联式TBCC排气系统试验工况点

    Table  1.   Experimental points of over-under TBCC exhaust system

    t/s Turbojet NPR Ramjet NPR
    0 50.66 0
    2 50.66 21.00
    4 50.66 57.47
    8 52.36 55.03
    10 52.97 51.57
    24 18.06 51.56
    25 12.39 51.56
    下载: 导出CSV

    表  2  TBCC组合推进系统模态转换过程时间序列

    Table  2.   Time series of mode transition process for TBCC system

    模态转换时间 模态转换阶段
    0~5.0s 冲压发动机通道(冷通流)打开
    5.0~12.0s 涡轮发动机关闭加力
    12.0~20.0s 涡轮发动机降转
    20.0~25.0s 涡轮发动机通道(风车)关闭
    下载: 导出CSV
  • [1] D'Oriano V, Savino R, Visone M. Aerothermodynamic study of a small hypersonic plane[J]. Aircraft Engineering and Aerospace Technology, 2018, 90(2):471-480. doi: 10.1108/AEAT-06-2015-0151
    [2] Wang Z G, Wang Y, Zhang J Q, et al. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel heat transfer[J]. Aerospace Science and Technology, 2014, 39:31-39. doi: 10.1016/j.ast.2014.08.008
    [3] Walker S, Tang M, Mamplata C. TBCC propulsion for a Mach 6 hypersonic airplane[C]. The 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Bremen, Germany. 2013.
    [4] Xiang X H, Liu Y, Qian Z S. Aerodynamic design and numerical simulation of over-under turbine-based combined-cycle (TBCC) inlet mode transition[J]. Procedia Engineering, 2015, 99:129-136. doi: 10.1016/j.proeng.2014.12.516
    [5] 刘晓波, 罗月培, 曾慧, 等.国外TBCC关键技术及试验设备研究综述[J].燃气涡轮试验与研究, 2016, 29(4):51-56. doi: 10.3969/j.issn.1672-2620.2016.04.011

    Liu X B, Luo Y P, Zeng H, et al. An overview of key technology and test facility for turbine-based combined cycle propulsion study oversea[J]. Gas Turbine Experiment and Research, 2016, 29(4):51-56. doi: 10.3969/j.issn.1672-2620.2016.04.011
    [6] Edwards C L W, Small W J, Weidner J P, et al. Studies of scramjet/airframe integration techniques for hypersonic aircraft[C]//Proc of the 13th Aerospace Sciences Meeting. 1975.
    [7] Walker S, Tang M, Mamplata C. TBCC propulsion for a Mach 6 hypersonic airplane[C]//The 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. 2013: 7238.
    [8] Zhang M Y, Wang Z X, Liu Z W, et al. Analysis of mode transition performance for a tandem TBCC engine[C]. The 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Salt Lake City, USA. 2016.
    [9] Liu J, Yuan H C, Guo R W. Unsteady flow characteristic analysis of turbine based combined cycle (TBCC) inlet mode transition[J]. Propulsion and Power Research, 2015, 4(3):141-149. doi: 10.1016/j.jppr.2015.07.006
    [10] Guo S, Xu J L, Mo J W, et al. Fluid-structure interaction study of the splitter plate in a TBCC exhaust system during mode transition phase[J]. Acta Astronautica. 2015, 112:126-139. doi: 10.1016/j.actaastro.2015.03.021
    [11] 花文达, 徐惊雷.三维并联式TBCC发动机排气系统设计与实验[J].航空动力学报, 2018, 33(9):2268-2277. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201809025

    Hua W D, Xu J L.Design approach and experiment of three-dimensional over/under TBCC exhaust system[J]. Journal of Aerospace Power, 2018, 33(9):2268-2277. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201809025
    [12] 牛彦沣, 徐惊雷, 许保成, 等.并联TBCC排气系统流场结构数值模拟及实验研究[J].推进技术, 2017, 38(12):2686-2691. http://d.old.wanfangdata.com.cn/Periodical/tjjs201712006

    Niu Y F, Xu J L, Xu B C, et al. Numerical and experimental study of over-under TBCC exhaust system flow structure[J]. Journal of Propulsion Technology, 2017, 38(12):2686-2691. http://d.old.wanfangdata.com.cn/Periodical/tjjs201712006
    [13] Lv Z, Xu J L, Mo J W. Study of the unsteady mode transition process for an over-under TBCC exhaust system[J]. Acta Astronautica, 2017, 136:259-272. doi: 10.1016/j.actaastro.2017.03.020
    [14] Cai Y H, Zhang J D, Wang Z X. Exploring TBCC engine inlet design for Ma=5[J]. Jounal of Northwestern Polytechnical Univercity, 2007, 25(5):615-619.
    [15] Steelant J. LAPCAT:high-speed propulsion technology[J]. Advances on Propulsion Technology for High-Speed Aircraft, 2008, 12(1):1-38. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0214754156/
    [16] 隋洪涛.精通CFD动网格工程仿真与案例实战[M].北京:人民邮电出版社, 2013.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  129
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-31
  • 修回日期:  2019-04-09
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日