留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内压缩波系对高超声速进气道自起动性能影响研究

贾轶楠 张启帆 仝晓通 岳连捷 张新宇

贾轶楠, 张启帆, 仝晓通, 等. 内压缩波系对高超声速进气道自起动性能影响研究[J]. 实验流体力学, 2019, 33(3): 60-67. doi: 10.11729/syltlx20190031
引用本文: 贾轶楠, 张启帆, 仝晓通, 等. 内压缩波系对高超声速进气道自起动性能影响研究[J]. 实验流体力学, 2019, 33(3): 60-67. doi: 10.11729/syltlx20190031
Jia Yinan, Zhang Qifan, Tong Xiaotong, et al. Effect of the inlet internal compression shock waves on restart characteristics of the hypersonic inlets[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 60-67. doi: 10.11729/syltlx20190031
Citation: Jia Yinan, Zhang Qifan, Tong Xiaotong, et al. Effect of the inlet internal compression shock waves on restart characteristics of the hypersonic inlets[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 60-67. doi: 10.11729/syltlx20190031

内压缩波系对高超声速进气道自起动性能影响研究

doi: 10.11729/syltlx20190031
基金项目: 

国家自然科学基金面上项目 11472279

国家自然科学基金面上项目 11672309

详细信息
    作者简介:

    贾轶楠(1990-), 女, 黑龙江哈尔滨人, 博士.研究方向:高超声速空气动力学.通信地址:北京市海淀区北四环西路15号(100190).E-mail:jiayn09@qq.com

    通讯作者:

    张启帆, E-mail: zhangqifan@imech.ac.cn

  • 中图分类号: V211.48

Effect of the inlet internal compression shock waves on restart characteristics of the hypersonic inlets

  • 摘要: 为了探究进气道肩部膨胀扇以及不同压缩方式对进气道自起动性能的影响,结合具体的进气道构型,针对不同的压缩角、边界层厚度开展了马赫数4.0级的风洞试验研究。结果表明:在不起动分离区同侧的膨胀扇会对当地气流加速,降低局部压强,进而对压缩激波较强时的进气道自起动过程有明显改善。而唇罩分级压缩对二元进气道的自起动能力也有提高效果。此外,对比侧压模型与顶压模型的试验结果发现,边界层厚度对侧压模型自起动性能的影响趋势与顶压式存在明显的差异。与此同时,当自起动受限于几何喉道的进气道构型,压缩方式对进气道自起动性能的影响不明显,但是对于由压缩激波-边界层干扰诱导分离区形成的气动喉道决定能否起动的进气道,侧压方式有利于提高进气道的自起动性能。
  • 图  1  简化进气道模型示意图与实物图

    Figure  1.  Schematic (a) and photograph (b) of the test inlet model

    图  2  二元进气道模型示意图与实物图

    Figure  2.  Schematic (a) and photograph (b) of the test two-dimensional inlet model

    图  3  侧压进气道模型图

    Figure  3.  Photographs of the side-compression inlet model

    图  4  GJF激波风洞布局及尺寸示意图

    Figure  4.  Sketch of the GJF shock tunnel

    图  5  GJF激波风洞的静压变化曲线(Ma=4.0)

    Figure  5.  Variation of static pressure with time in GJF shock tunnel (Ma=4.0)

    图  6  进气道自起动破膜装置示意图

    Figure  6.  Schematic of experimental devices for inlet restarting in shock tunnel

    图  7  二元进气道破膜后流场纹影示意图(α=7°,ICR=1.89)

    Figure  7.  Schlieren images of two-dimensional inlet model after the diaphragm ruptures (α=7°, ICR=1.89)

    图  8  二元进气道自起动过程纹影示意图(α=7°, ICR=1.89)

    Figure  8.  Schlieren images of two-dimensional inlet restart process (α=7°, ICR=1.89)

    图  9  二元进气道自起动性能随气流偏转角变化曲线

    Figure  9.  Variation of the maximum ICR with deflection angle

    图  10  二元进气道唇罩分级压缩示意图

    Figure  10.  Multiple-shockes design of two-dimensional inlet model

    图  11  唇罩分级压缩对二元进气道自起动性能影响

    Figure  11.  Influence of multiple-shocks design on inlet restart capability

    图  12  侧压式进气道自起动性能随压缩角度α的变化

    Figure  12.  Variation of the maximum ICR with the cowl angle of side-compression inlet model

    图  13  侧压式进气道自起动性能随唇罩截面边界层相对厚度H/δ的变化

    Figure  13.  Variation of the maximum ICR with H/δ of side-compression inlet model

    图  14  侧压进气道与顶压进气道自起动性能随唇罩截面边界层相对厚度H/δ的变化

    Figure  14.  Variation of the maximum ICR with H/δ of side-compression and cowl-compression inlet models

    表  1  GJF激波风洞实验段气流参数

    Table  1.   The flow conditions in the test section of GJF shock tunnel

    Ma 总压p0/MPa 总温T0/K 静压p/Pa 单位雷诺数Re/m-1
    4.0 1.4 430.0 9220.51 3.58××107
    下载: 导出CSV
  • [1] Bowcutt K G. Multidisciplinary optimization of airbreathing hypersonic vehicles[J]. Journal of Propulsion and Power, 2001, 17(6):1184-1190. doi: 10.2514/2.5893
    [2] McClinton C R, Hunt J L, Ricketts R H. Airbreathing hypersonic technology vision vehicles and development dreams[R]. AIAA-99-4987, 1999.
    [3] Kantrowitz A, Donaldson C D. Preliminary investigation of supersonic diffusers[R]. NACA-ACR-L5D20, 1945.
    [4] Kantrowitz A. The formation and stability of normal shock waves in channel flows[R]. NACA-TN-1225, 1947.
    [5] Li Z F, Huang B, Yang J M. A novel test of starting characteristics of hypersonic inlets in shock tunnel[R]. AIAA-2011-2308, 2011.
    [6] 李祝飞, 黄舶, 贾立超, 等.激波风洞中高超声速进气道起动问题实验研究[C]//十四届全国激波与激波管学术会议论文集. 2010.

    Li Z F, Huang B, Jia L C, et al. Starting characteristics of hypersonic inlets in shock tunnel[C]//Proc of the 14th Chinese National Symposium on Shock Waves. 2010.
    [7] 王成鹏, 程克明.高超进气道临界起动特征[J].航空动力学报, 2008, 23(6):997-1002. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200806005

    Wang C P, Cheng K M. Critical starting characteristics of hypersonic inlets[J]. Journal of Aerospace Power, 2008, 23(6):997-1002. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200806005
    [8] Sun B, Zhang K Y. Empirical equation for self-starting limit of supersonic inlets[J]. Journal of Propulsion and Power, 2010, 26(4):874-875. doi: 10.2514/1.46798
    [9] Hohn O M, Gülhan A. Experimental investigation on the influence of sidewall compression on the flowfield of a scramjet inlet at Mach 7[R]. AIAA-2011-2350, 2011.
    [10] Goldberg T J, Hefner J N. Starting criterion for hypersonic inlets[J]. Journal of Aircraft, 1970, 7(3):275-277. doi: 10.2514/3.44160
    [11] Goldberg T J, Hefner J N. Starting phenomena for hypersonic inlet with thick turbulent boundary layers at Mach 6[R]. NASA TN D-6280, 1971.
    [12] Van Wie D M, Kwok F T, Walsh R F. Starting characteristics of supersonic inlets[C]. The 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Lake Buena Vista, USA, 1996.
    [13] Yue L J, Jia Y N, Xu X, et al. Effect of cowl shock on restart characteristics of simple ramp type hypersonic inlets with thin boundary layers[J]. Aerospace Science and Technology, 2018, 74:72-80. doi: 10.1016/j.ast.2017.12.018
    [14] Flock A K, Gülhan A. Experimental investigation of the starting behavior of a three-dimensional scramjet intake[J]. AIAA Journal, 2015, 53(9):2686-2693. doi: 10.2514/1.J053786
    [15] 岳连捷, 刘红, 徐骁, 等.激波风洞进气道自起动实验方法[C]//第九届全国实验流体力学论文集. 2013.

    Yue L J, Liu H, Xu X, et al. Experimental method for hypersonic inlet self-starting in shock tunnel[C]//Proc of the 9th national conference on experimental fluid mechanics. 2013.
    [16] Chapman D R, Kuehn D M, Larson H K. Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition[R]. NACA-TN-3869, 2011.
    [17] Trexler C A. Performance of an inlet for an integrated scramjet concept[J]. Journal of Aircraft, 2015, 11(9):589-591. doi: 10.2514-3.60393/
    [18] Trexler C A. Inlet performance of the integrated langley scramjet module[C]. The 11th Propulsion Conference. Anaheim, USA, 1975.
    [19] 袁化成, 梁德旺.高超声速侧压式模型进气道不起动特性分析[J].南京航空航天大学学报, 2004, 36(6):683-687. doi: 10.3969/j.issn.1005-2615.2004.06.003

    Yuan H C, Liang D W. Characteristic analysis of unstart performance for hypersonic side-wall inlet model[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2004, 36(6):683-687. doi: 10.3969/j.issn.1005-2615.2004.06.003
    [20] 向安宇, 岳连捷, 肖雅彬, 等.侧压式超燃进气道流场特性研究[J].力学与实践, 2007, 29(3):7-10. doi: 10.3969/j.issn.1000-0879.2007.03.002

    Xiang A Y, Yue L J, Xiao Y B, et al. Investigation on sidewall compression scramjet inlet[J]. Mechanics in Engineering, 2007, 29(3):7-10. doi: 10.3969/j.issn.1000-0879.2007.03.002
    [21] 龚鹏, 岳连捷, 肖雅斌, 等.带中心支板侧压进气道流场特性研究[J].实验流体力学, 2008, 22(1):31-35. doi: 10.3969/j.issn.1672-9897.2008.01.007

    Gong P, Yue L J, Xiao Y B, et al. Investigation on flow pattern of sidewall compression scramjet inlet with single central strut[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1):31-35. doi: 10.3969/j.issn.1672-9897.2008.01.007
    [22] Zheltovodov A A, Maksimov A I, Shevchenko A M. Topology of three-dimensional separation under the conditions of symmetric interaction of crossing[J]. Thermophysics and Aeromechanics, 1998, 5(3):293-312.
    [23] Prandtl L. Über Flüßigkeitsbewegung bei sehr kleiner Reibung[C]. The Verhandlungen des dritten internationalen Mathematiker-Kongresses. Heidelberg, Germany, 1904.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  140
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-28
  • 修回日期:  2019-04-18
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日