留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内转式进气道与飞行器前体的一体化设计综述

乔文友 余安远

乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3): 43-59. doi: 10.11729/syltlx20190028
引用本文: 乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3): 43-59. doi: 10.11729/syltlx20190028
Qiao Wenyou, Yu Anyuan. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59. doi: 10.11729/syltlx20190028
Citation: Qiao Wenyou, Yu Anyuan. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59. doi: 10.11729/syltlx20190028

内转式进气道与飞行器前体的一体化设计综述

doi: 10.11729/syltlx20190028
基金项目: 

国家自然科学基金项目 11702229

详细信息
    作者简介:

    乔文友(1983-), 男, 陕西渭南人, 博士, 讲师.研究方向:高超声速进气道设计、高超声速飞行器前体/进气道一体化设计、计算空气动力学.通信地址:四川省绵阳市涪城区青龙大道中段59号, 西南科技大学科技园B座5-5(621010).E-mail:qiaowy@swust.edu.cn

    通讯作者:

    乔文友, E-mail:qiaowy@swust.edu.cn

  • 中图分类号: V211.48

Overview on integrated design of inward-turning inlet with aircraft forebody

  • 摘要: 飞行器前体/高超声速内转式进气道的一体化设计已经成为吸气式高超声速推进系统研究的一个热点。从气动设计角度分析了高超声速内转式进气道及其与飞行器前体的一体化设计方法。内转式进气道的设计方法主要包括直接流线追踪方法、基于均匀来流的吻切流设计方法和基于前体非均匀来流的内转式进气道设计方法。基于内转式进气道的一体化设计主要包括正对来流的独立进气方式以及利用前体预压缩进气方式两类,结合内转式进气道的设计方法对这两者进行了深入分析。根据分析,基于均匀来流条件的内转式进气道的设计方法得到了深入发展,但还有必要进一步发展非均匀来流条件下的设计方法以提升一体化设计的灵活性;此外,随着内转式进气道设计方法的深入发展,一体化设计也将得到进一步发展。
  • 图  1  Busemann进气道试验模型[25]

    Figure  1.  Experimental model of Busemann inlet[25]

    图  2  Hycause进气道[27]

    Figure  2.  Hycause inlet[27]

    图  3  ICFC流场示意图和CFD结果压力分布[30]

    Figure  3.  Schematic and CFD result of "ICFC" basic flow field[30]

    图  4  模块化内转式进气道[35]

    Figure  4.  Modular hypersonic inlet[35]

    图  5  马赫数分布可控的内转式进气道流场结果[21]

    Figure  5.  CFD results of the designed inward-turning inlet based on the controllable Mach number distribution[21]

    图  6  圆弧形中心体的基本流场[36]

    Figure  6.  Basic flow-field with arc center body[36]

    图  7  型面流场控制后的进气道近壁流线分布[37]

    Figure  7.  Near-wall streamline of inlet with surface flow control[37]

    图  8  Jaws进气道流场结构[38]

    Figure  8.  Flow-field of Jaws inlet[38]

    图  9  Jaws进气道气动型面[39]

    Figure  9.  Aerodynamic surface of Jaws inlet[39]

    图  10  根据出口速度分布确定流场的特征线法[45]

    Figure  10.  MOC for determining flow-field based on outlet velocity distribution[45]

    图  11  根据出口流场参数确定基本流场的特征线法[47]

    Figure  11.  MOC for determining basic flow-field based on outlet flow-field parameters[47]

    图  12  约束反射激顶定点处速度方向的基本流场[48]

    Figure  12.  Basic flow-field design method for constraining the velocity direction at fixed point of reflected shock[48]

    图  13  基于Busemann流场压力分布构造基本流场[49]

    Figure  13.  Basic flow-field design method based on the pressure distribution of Busemann flow-field[49]

    图  14  约束基本流场喉道速度方向的基本流场马赫数分布云图

    Figure  14.  Mach number contours of the basic flow-field for constraining the velocity direction at throat section

    图  15  REST进气道生成原理[17]

    Figure  15.  Generating principle of REST inlet[17]

    图  16  基于样条曲面的内压缩段设计方法[52]

    Figure  16.  Design method of internal compression section based on spline surface[52]

    图  17  内乘波进气道设计原理[19]

    Figure  17.  Design principle of internal waverider inlet[19]

    图  18  等收缩比进气道设计原理[54]

    Figure  18.  Design principle of inlet with iso-contraction-ratio[54]

    图  19  可排除前体低能流的内转式进气道[57]

    Figure  19.  Inward-turning inlet for removing forebody low-kinetic flow[57]

    图  20  CSMP方法结果与CFD结果对比

    Figure  20.  Comparison of the CFD results and CSMP results

    图  21  头部进气方式

    Figure  21.  Head intake modes

    图  22  Falcon飞行器的设计原理图[73]

    Figure  22.  Design schematic of Falcon aircraft[73]

    图  23  波音公司的乘波前体/内转式进气道一体化设计方案[74]

    Figure  23.  Waverider forebody/inward-turning inlet integration solution presented by Boeing[74]

    图  24  基于Jaws进气道一体化构型[78]

    Figure  24.  Integrated configuration based on Jaws inlet[78]

    图  25  双旁侧进气一体化方案[80]

    Figure  25.  Double side intake integration scheme[80]

    图  26  HSGTS第二级构型[81]

    Figure  26.  Second stage of HSGTS[81]

    图  27  LAPCAT-MAR2飞行器构型[82]

    Figure  27.  Configuration of LAPCAT-MAR2[82]

    图  28  基于楔体流场的乘波体[84]

    Figure  28.  Waverider based on wedge flow-field[84]

    图  29  基于楔锥体流场的乘波体[85]

    Figure  29.  Waverider based on wedge-cone flow-field[85]

    图  30  应用吻切流方法设计的乘波体[86]

    Figure  30.  Waverider based on osculating method[86]

    图  31  密切曲锥乘波前体/进气道一体化构型[66]

    Figure  31.  Integration configuration of the osculating inward turning cone waverider/inlet[66]

    图  32  双乘波飞行器前体/进气道一体化构型[95]

    Figure  32.  Configuration of dual-waverider forebody/inlet[95]

    图  33  匹配弹身前体的内转式进气道[96]

    Figure  33.  Inward-turning inlet matching missile forebody[96]

    图  34  曲锥前体/三维内转进气道一体化构型[97]

    Figure  34.  Integrated configuration of curved conical forebody and three-dimensional inward-turning inlet[97]

    图  35  波音公司提出的高超声速飞行器模型

    Figure  35.  Hypersonic aircraft model proposed by Boeing

    图  36  全乘波背部进气飞行器概念图[98]

    Figure  36.  Concept figure of full waverider aircraft with back intake[98]

    图  37  飞行器机体/内乘波进气道一体化构型[99]

    Figure  37.  Integrated configuration of aircraft forebody and internal waverider inlet[99]

    图  38  基于前体激波设计的内转式进气道[100]

    Figure  38.  Inward-turning inlet designed based on forebody shock[100]

    图  39  可匹配弹身前体非均匀流场的内转式进气道[100]

    Figure  39.  Inward-turning inlet that matches non-uniform flow-field of missile forebody[100]

  • [1] Haney J W, Beaulieu W B. Waverider inlet integration issues[R]. AIAA-1994-0383, 1994.
    [2] Heiser W H, Pratt D T, Daniel H D, et al. Hypersonic airbreathing propulsion[M]. Washington D C:American Institute of Aeronautics and Astronautics Inc, 1994.
    [3] Javaid K H, Serghides V C. Airframe-propulsion integration methodology for waverider-derived hypersonic cruise aircraft design concepts[R]. AIAA-2004-1201, 2004.
    [4] Andrews E, Mackley E. Review of NASA's hypersonic research engine project[R]. AIAA-93-2323, 1993.
    [5] 吴颖川, 贺元元, 贺伟, 等.吸气式高超声速飞行器机体推进一体化技术研究进展[J].航空学报, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020

    Wu Y C, He Y Y, He W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020
    [6] 向先宏, 钱战森.高超声速飞行器机体/推进气动布局一体化设计技术研究现状[J].航空科学技术, 2015, 10:44-52. http://cdmd.cnki.com.cn/Article/CDMD-10335-1018229103.htm

    Xiang X H, Qian Z S. An overview and development analysis of hypersonic airframe/propulsion integrative design technology[J]. Aeronautical Science and Technology, 2015, 10:44-52. http://cdmd.cnki.com.cn/Article/CDMD-10335-1018229103.htm
    [7] 尤延铖, 梁德旺, 郭荣伟, 等.高超声速三维内收缩式进气道/乘波前体一体化设计研究评述[J].力学进展, 2009, 39(5):513-525. doi: 10.3321/j.issn:1000-0992.2009.05.001

    You Y C, Liang D W, Guo R W, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody[J]. Advances in Mechanics, 2009, 39(5):513-525. doi: 10.3321/j.issn:1000-0992.2009.05.001
    [8] 王江峰, 王旭东, 李佳伟, 等.高超声速巡航飞行器乘波布局气动设计综述[J].空气动力学学报, 2018, 36(5):705-728. doi: 10.7638/kqdlxxb-2017.0117

    Wang J F, Wang X D, Li J W, et al. Overview on aerodynamic design of cruising waverider configuration for hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2018, 36(5):705-728. doi: 10.7638/kqdlxxb-2017.0117
    [9] Ding F, Liu J, Shen C B, et al. An overview of research on waverider design methodology[J]. Acta Astronautica, 2017, 140:190-205. doi: 10.1016/j.actaastro.2017.08.027
    [10] Ding F, Liu J, Shen C B, et al. An overview of waverider design concept in airframe/inlet integration methodology for air-breathing hypersonic vehicles[J]. Acta Astronautica, 2018, 152:639-656. doi: 10.1016/j.actaastro.2018.09.002
    [11] 丁峰, 柳军, 沈赤兵, 等.乘波概念应用于吸气式高超声速飞行器机体/进气道一体化设计方法研究综述[J].实验流体力学, 2018, 32(6):16-26. http://www.syltlx.com/CN/abstract/abstract11151.shtml

    Ding F, Liu J, Shen C B, et al. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6):16-26. http://www.syltlx.com/CN/abstract/abstract11151.shtml
    [12] Billig F S, Jacobsen L S. Comparison of planar and axisymmetric flowpaths for hydrogen fueled space access vehicles[R]. AIAA-2003-4407, 2003.
    [13] Zanchetta M, Cain T. An axisymmetric internal compression inlet[R]. AIAA-1998-1525, 1998.
    [14] Goldfeld M A, Nestoulia R V. Numerical and experimental studies of 3D hypersonic inlet[R]. AIAA-2003-14, 2003.
    [15] Barkmeyer D E F, Starkey R P, Lewis M J. Inverse waverider design for inward turning inlets[R]. AIAA-2005-3915, 2005.
    [16] Smart M K. Design of three-dimensional hypersonic inlets with rectangular to elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3):408-416. doi: 10.2514/2.5459
    [17] Smart M K, White J A. Computational investigation of the performance and back-pressure limits of a hypersonic inlet[R]. AIAA-2002-508, 2002.
    [18] Smart M K, Trexler C A. Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 2004, 20(2):288-293. doi: 10.2514/1.1296
    [19] 尤延铖.三维内乘波式高超声速进气道设计方法与流动特征研究[D].南京: 南京航空航天大学, 2008.

    You Y C. Designing concept and flow characteristic research of internal waverider hypersonic inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
    [20] 南向军.压升规律可控的高超声速内收缩进气道设计方法研究[D].南京: 南京航空航天大学, 2012.

    Nan X J. Investigation on design methodology of hypersonic inward turning inlets with controlled pressure rise law[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
    [21] 李永洲.马赫数分布可控的高超声速内收缩进气道及其一体化设计研究[D].南京: 南京航空航天大学, 2014.

    Li Y Z. Investigation of hypersonic inward turning inlet with controlled Mach number distribution and its integrated design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
    [22] Busemann A. Die achsensymmetrische kegelige überschallströmung[J]. Luftfahrtforschung, 1942, 19(4):137-144.
    [23] Dsouza N, Möelder S. Applicability of hypersonic small-disturbance theory and similitude to internal hypersonic conical flows[J]. Journal of Spacecraft and Rockets, 1970, 7(2):149-154. doi: 10.2514/3.29890
    [24] Billig F S, Baurle R A, Tam C J, et al. Design and analysis of streamline traced hypersonic inlets[R]. AIAA-1999-4974, 1999.
    [25] Jacobsen L S, Tam C J, Behdadnia R, et al. Starting and operation of a streamline-traced Busemann inlet at Mach 4[R]. AIAA-2006-4508, 2006.
    [26] Flock A K, Guelhan A. Viscous effects and truncation effects in axisymmetric Busemann scramjet intakes[J]. AIAA Journal, 2016, 54(6):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e91e1802dc1cc3dbbac606a9f25ea4fc
    [27] Walker S H, Rodgers F C, Esposita A L. Hypersonic collaborative Australia/United States experiment (Hycause)[R]. AIAA-2005-3254, 2005.
    [28] 孙波, 张堃元, 王成鹏, 等. Busemann进气道无粘流场数值分析[J].推进技术, 2005, 26(3):242-247. doi: 10.3321/j.issn:1001-4055.2005.03.012

    Sun B, Zhang K Y, Wang C P, et al. Inviscid CFD analysis of hypersonic Busemann inlet[J] Journal of Propulsion Technology, 2005, 26(3):242-247. doi: 10.3321/j.issn:1001-4055.2005.03.012
    [29] 孙波, 张堃元. Busemann进气道起动问题初步研究[J].推进技术, 2006, 27(2):128-131. doi: 10.3321/j.issn:1001-4055.2006.02.008

    Sun B, Zhang K Y. Prenminary investigation on Busemann inlet starting characteristics[J]. Journal of Propulsion Technology, 2006, 27(2):128-131. doi: 10.3321/j.issn:1001-4055.2006.02.008
    [30] 郭军亮, 黄国平, 尤延铖, 等.改善内乘波式进气道出口均匀性的内收缩基本流场研究[J].宇航学报, 2009, 30(5):1934-1940, 1952. doi: 10.3873/j.issn.1000-1328.2009.05.032

    Guo J L, Huang G P, You Y C, et al. Study of internal compression flowfield for improving the outflow uniformity of internal waverider inlet[J]. Journal of Astronautics, 2009, 30(5):1934-1940, 1952. doi: 10.3873/j.issn.1000-1328.2009.05.032
    [31] O'Brien T F, Colville J R. Blunt leading edge effects on inviscid truncated Busemann inlet performance[R]. AIAA-2007-5411, 2007.
    [32] O'Brien T F, Colville J R. Analytical computation of leading-edge truncation effects on inviscid Busemann-inlet performance[J]. Journal of Propulsion and Power, 2008, 24(4):655-661. doi: 10.2514/1.30178
    [33] Ramasubramanian V, Lewis M, Starkey R. Performance of various truncation strategies employed on hypersonic Busemann inlets[R]. AIAA-2009-7249, 2009.
    [34] 黄慧慧, 黄国平, 俞宗汉, 等.高外压缩比的高超声速内乘波进气道设计[J].工程热物理学报, 2015, 36(6):1233-1237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201506015

    Huang H H, Huang G P, Yu Z H, et al. The design of internal waverider hypersonic inlet with high ratio of external compression[J]. Journal of Engineering Thermophysics, 2015, 36(6):1233-1237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201506015
    [35] Matthews A J, Jones T V. Design and test of a modular waverider hypersonic intake[J]. Journal of propulsion and power, 2006, 22(4):913-920. doi: 10.2514/1.17874
    [36] 李永洲, 张堃元, 钟启涛, 等.变中心体新型轴对称基准流场研究[C].第四届冲压发动机技术交流会, 北京, 2013.
    [37] 王卫星, 顾强, 郭荣伟.内转式进气道流动控制研究[J].推进技术, 2017, 38(5):961-967. http://d.old.wanfangdata.com.cn/Periodical/tjjs201705001

    Wang W X, Gu Q, Guo R W. Srudy of flow control of inward turning inlet[J]. Journal of Propulsion Technology, 2017, 38(5):961-967. http://d.old.wanfangdata.com.cn/Periodical/tjjs201705001
    [38] Malo-Molina F J, Gaitonde D V, Kutschenreuter P H. Numerical investigation of an innovative inward turning inlet[R]. AIAA-2005-4871, 2005.
    [39] Malo-Molina F J, Gaitonde D V, Ebrahimi H B, et al. Analysis of an innovative inward turning inlet using an air-JP8 combustion mixture at Mach 7[R]. AIAA-2006-3041, 2006.
    [40] 董昊.高超声速咽式进气道流场特性和设计方法研究[D].南京: 南京航空航天大学, 2010.

    Dong H. Investigation of flowfield characteristics and design methodology of hypersonic Jaws inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.
    [41] 辜天来, 张帅, 郑耀.咽式进气道/等直隔离段的反压特性[J].浙江大学学报(工学版), 2016, 50(7):1418-1424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201607027

    Gu T L, Zhang S, Zheng Y. Back pressure characteristics of jaws inlet with constant-area isolator[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(7):1418-1424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201607027
    [42] 辜天来, 付磊, 张帅, 等.咽式进气道设计工况下性能初步分析[J].航空动力学报, 2014, 29(9):2070-2078. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201409008

    Gu T L, Fu L, Zhang S, et al. Preliminary analysis of jaws inlet performance under design conditions[J]. Journal of Aerospace Power, 2014, 29(9):2070-2078. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201409008
    [43] Malo-Molina F J, Gaitonde D V, Ebrahimi H B. Three dimensional analysis of a fully coupled hypersonic air-breathing inlet-combustor flowpath[R]. AIAA-2010-412, 2010.
    [44] Malo-Molina F J, Gaitonde D, Ebrahimi H B, et al. Three-dimensional analysis of a supersonic combustor coupled to innovative inward-turning inlets[J]. AIAA Journal, 2010, 48(3):572-582. doi: 10.2514/1.43646
    [45] 方兴军.控制出口速度分布的超声速内流通道反设计[D].南京: 南京航空航天大学, 2011.

    Fang X J. Inverse design of supersonic internal flow path based on given outflow velocity profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
    [46] 刘燚.控制出口马赫数分布的高超声速压缩通道反设计[D].南京: 南京航空航天大学, 2012.

    Liu Y. Inverse design of hypersonic air compression tube for generating desirable Mach profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
    [47] 韩伟强, 朱呈祥, 尤延铖, 等.给定下游边界的超声速流场逆向求解方法[J].推进技术, 2016, 37(4):624-631. http://d.old.wanfangdata.com.cn/Periodical/tjjs201604004

    Han W Q, Zhu C X, You Y C, et al. An inverse method for supersonic flowfield with given downstream boundary[J]. Journal of Propulsion Technology, 2016, 37(4):624-631. http://d.old.wanfangdata.com.cn/Periodical/tjjs201604004
    [48] 卫锋, 贺旭照, 贺元元, 等.三维内转式进气道双激波基准流场的设计方法[J].推进技术, 2015, 36(3):358-364. http://d.old.wanfangdata.com.cn/Periodical/tjjs201503006

    Wei F, He X Z, He Y Y, et al. Design method of dual-shock wave basic flow-field for inward turning inlet[J]. Journal of Propulsion Technology, 2015, 36(3):358-364. http://d.old.wanfangdata.com.cn/Periodical/tjjs201503006
    [49] 何家祥, 金东海.基于Busemann压升规律的可控消波内转基准流场设计[J].航空动力学报, 2017, 32(5):1168-1175. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201705018

    He J X, Jin D H. Busemann pressure rise distribution based design of inward turning basic flowfield with controlled and cancelled shock waves[J]. Journal of Aerospace Power, 2017, 32(5):1168-1175. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201705018
    [50] 乔文友, 余安远, 黎崎.控制出口截面速度方向的内转式进气道设计方法研究[C].航天三网第38届技术交流会暨第二届空天动力联合会议, 大连, 2017.
    [51] 乔文友, 黄国平, 夏晨, 等.发展用于高速飞行器前体/进气道匹配设计的逆特征线法[J].航空动力学报, 2014, 29(6):1444-1452. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201406026

    Qiao W Y, Huang G P, Xia C, et al. Development of inverse characteristic method for matching design of high-speed aircraft forebody/inlet[J]. Journal of Aerospace Power, 2014, 29(6):1444-1452. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201406026
    [52] 谭慧俊, 黄河峡, 卜焕先, 等.一种高超声速内转式进气道的内通道设计方法: CN105205220A[P]. 2015-12-30.
    [53] Sobieczky H, Dougherty F C, Jones K. Hypersonic waverider design from given shock waves[C]. The 1st International Hypersonic Waverider Symposium, University of Maryland, USA, 1990.
    [54] Xiao Y B, Yue L J, Chenr L H, et. al. Iso-contraction-ratio methodology for the design of hypersonic inward turning inlets with shape transition[R]. AIAA-2012-5978, 2012.
    [55] 尤延铖, 黄国平, 郭军亮, 等.基于任意激波形状的内乘波式高超声速进气道: ZL200820159849. 3[P]. 2009-09-02.
    [56] 肖雅彬, 岳连捷, 卢洪波, 等.局部收缩比一致的变截面高超声速内转式进气道: ZL201210157992. X[P]. 2014-06-13.
    [57] 乔文友.可排除前体低能量的高超声速三维内收缩式进气道研究[D].南京: 南京航空航天大学, 2015.

    Qiao W Y. Design and investigation of a novel hypersonic three-dimensional inward turning inlet for removing forebody low kinetic flow[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
    [58] Jones K D. A new inverse method for generating high-speed aerodynamic flows with application to waverider design[D]. Colorado: University of Colorado Boulder, 1993.
    [59] Jones K D, Center K B. Waverider design methods for non-conical shock geometries[R]. AIAA-2002-3204, 2002.
    [60] 刘小勇.超燃冲压发动机技术[J].飞航导弹, 2003, 2:38-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhdd201307020
    [61] 甘文彪, 阎超, 耿云飞, 等.乘波飞行器一体化构型设计[J].空气动力学学报, 2012, 30(1):68-73. doi: 10.3969/j.issn.0258-1825.2012.01.012

    Gan W B, Yan C, Geng Y F, et al. Waverider design of integrated configuration[J]. Acta Aerodynamica Sinica, 2012, 30(1):68-73. doi: 10.3969/j.issn.0258-1825.2012.01.012
    [62] Nonweiler T R F. Aerodynamic problems of manned space vehicles[J]. Journal of the Royal Aeronautical Society, 1959, 63(585):521-528. doi: 10.1017/S0368393100071662
    [63] Rasmussen M. Hypersonic flow[M]. New York:John Wiley & Sons Inc, 1994.
    [64] Starkey R P, Lewis M J. Critical design issues for airbreathing hypersonic waverider missiles[J]. Journal of Spacecraft and Rockets, 2001, 38(4):510-519. doi: 10.2514/2.3734
    [65] Jones J G, Moore K C, Pike J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Ingenieur-Archiv, 1968, 37(1):56-72. doi: 10.1007/BF00532683
    [66] He X Z, Le J L, Zhou Z, et al. Osculating inward turning cone waverider/inlet(OICWI) design methods and experimental study[R]. AIAA-2012-5810, 2012.
    [67] Lewis M J, Takashima N. Engine/airframe integration for waverider cruise vehicles[R]. AIAA-1993-0507, 1993.
    [68] Takashima N, Lewis M J. Wedge-cone waverider configuration for engine-airframe interaction[J]. Journal of Aircraft, 2012, 32(5):1142-1144. http://cn.bing.com/academic/profile?id=d6d6d8d362f6200880cd11cd3a683a10&encoded=0&v=paper_preview&mkt=zh-cn
    [69] 赵桂林, 胡亮, 闻洁, 等.乘波构形和乘波飞行器研究综述[J].力学进展, 2003, 33(3):357-374. doi: 10.3321/j.issn:1000-0992.2003.03.007

    Zhao G L, Hu L, Wen J, et al. An overview of the research on waveriders and waverider-derived hypersonic vehicles[J]. Advances in Mechanics, 2003, 33(3):357-374. doi: 10.3321/j.issn:1000-0992.2003.03.007
    [70] 希舍尔.高超声速飞行器气动热力学设计问题精选[M].北京:国防工业出版社, 2013.

    Hirschel E H. Selected aerothermodynamic design problems of hypersonic flight vehicles[M]. Beijing:National Defense Industry Press, 2013.
    [71] Kothari A P, Tarpley C, McLaughlin T A, et al. Hypersonic vehicle design using inward turning flow fields[R]. AIAA-1996-2552, 1996.
    [72] Mehta U, Aftosmis M, Bowles J, et al. Skylon aerospace plane and its aerodynamics and plumes[J]. Journal of Spacecraft and Rockets, 2016, 53(2):340-353. doi: 10.2514/1.A33408
    [73] Elvin J D. Integrated inward turning inlets and nozzles for hypersonic air vehicles: US 2007/0187550 A1[P]. 2007-08-16.
    [74] Smith T R, Bowcutt K G. Integrated hypersonic inlet design: USA, 08256706 B1[P]. 2012-09-04.
    [75] Wang J F, Cai J S, Liu C Z, et al. Aerodynamic configuration integration design of hypersonic cruise aircraft with inward-turning inlets[J]. Chinese Journal of Aeronautics, 2017, 30(4):1349-1362. doi: 10.1016/j.cja.2017.05.002
    [76] 南向军, 张堃元, 金志光.乘波前体两侧高超声速内收缩进气道一体化设计[J].航空学报, 2012, 33(8):1417-1426. http://d.old.wanfangdata.com.cn/Periodical/hkxb201208008

    Nan X J, Zhang K Y, Jin Z G. Integrated design of waverider forebody and lateral hypersonic inward turning inlets[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1417-1426. http://d.old.wanfangdata.com.cn/Periodical/hkxb201208008
    [77] 向先宏.基于三维内收缩进气道的高超声速飞行器一体化概念设计[D].南京: 南京航空航天大学, 2011.

    Xiang X H. Conceptual design of an integrative hypersonic vehicle based on 3D inward-turning inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
    [78] 向先宏, 程克明, 王成鹏.基于类咽式进气道的高超声速飞行器一体化设计[J].宇航学报, 2012, 33(1):19-26. doi: 10.3873/j.issn.1000-1328.2012.01.003

    Xiang X H, Cheng K M, Wang C P. Integrative design of airbreathing hypersonic vehicle based on sim-Jaws inlet[J]. Journal of Astronautics, 2012, 33(1):19-26. doi: 10.3873/j.issn.1000-1328.2012.01.003
    [79] 李永洲, 张堃元.基于马赫数分布可控曲面外/内锥形基准流场的前体/进气道一体化设计[J].航空学报, 2015, 36(1):289-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201501023

    Li Y Z, Zhang K Y. Integrated design of forebody and inlet based on external and internal conical basic flow field with controlled Mach number distribution surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):289-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201501023
    [80] 崔凯, 胡守超, 李广利, 等.双旁侧进气高超声速飞机概念设计与评估[J].中国科学:技术科学, 2013, 43(10):1085-1093. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201310004
    [81] Bowcutt K G, Smith T R, Kothari A P, et al. The hypersonic space and global transportation system: a concept for routine and affordable access to space[R]. AIAA-2011-2295, 2011.
    [82] Langener T, Steelant J, Roncioni P, et al. Preliminary performance analysis of the LAPCAT-MR2 by means of nose-to-tail computations[R]. AIAA-2012-5872, 2012.
    [83] 向先宏, 钱战森.吸气式高超声速飞行器机体/推进一体化设计技术研究进展及分类对比分析[J].推进技术, 2018, 39(10):2207-2218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201810006

    Xiang X H, Qian Z S. An overview and development analysis of air-breathing hypersonic airframe/propulsion integrative design technology[J]. Journal of Propulsion Technology, 2018, 39(10):2207-2218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201810006
    [84] Starkey R P, Lewis M J. Simple analytical model for parametric studies of hypersonic waveriders[J]. Journal of Spacecraft and Rockets, 1999, 36(4):516-523. doi: 10.2514/3.27194
    [85] Takashima N, Lewis M J. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration[R]. AIAA-1994-0380, 1994.
    [86] Jones K D, Sobieczky H, Seebass A R, et al. Waverider design for generalized shock geometries[J]. Journal of Spacecraft and Rockets, 1995, 32(6):957-963. doi: 10.2514/3.26715
    [87] Kontogiannis K, Taylor N, Sóbester A. Parametric geometry models for hypersonic aircraft: integrated external inlet compression[R]. AIAA-2016-0915, 2016.
    [88] 陈小庆, 侯中喜, 何烈堂, 等.吻切锥乘波构型优化设计与分析[J].国防科技大学学报, 2007, 29(4):12-16. doi: 10.3969/j.issn.1001-2486.2007.04.003

    Chen X Q, Hou Z X, He L T, et al. Optimized design and analyze of osculating cone waverider[J]. Journal of National University of Defense Technology, 2007, 29(4):12-16. doi: 10.3969/j.issn.1001-2486.2007.04.003
    [89] 王卓, 钱翼稷.乘波机外形设计[J].北京航空航天大学学报, 1999, 25(2):180-183. doi: 10.3969/j.issn.1001-5965.1999.02.014

    Wang Z, Qian Y J. Waverider configuration design[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(2):180-183. doi: 10.3969/j.issn.1001-5965.1999.02.014
    [90] 鲍文, 姚照辉.综合离心力/气动力的升力体高超声速飞行器纵向运动建模研究[J].宇航学报, 2009, 30(1):128-133, 144. doi: 10.3873/j.issn.1000-1328.2009.00.023

    Bao W, Yao Z H. Study on longitudinal modeling for integrated centrifugal/aero force lifting-body hypersonic vehicles[J]. Journal of Astronautics, 2009, 30(1):128-133, 144. doi: 10.3873/j.issn.1000-1328.2009.00.023
    [91] 肖洪, 吴丁毅, 刘振侠, 等.两种乘波前体/进气道一体化设计与性能研究[J].哈尔滨工业大学学报, 2009, 41(7):150-154. doi: 10.3321/j.issn:0367-6234.2009.07.034

    Xiao H, Wu D Y, Liu Z X, et al. Integrated design and performance research of waverider forebody/inlet[J]. Journal of Harbin Institute of Technology, 2009, 41(7):150-154. doi: 10.3321/j.issn:0367-6234.2009.07.034
    [92] 唐硕, 祝强军.吸气式高超声速飞行器动力学建模研究进展[J].力学进展, 2011, 41(2):187-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201102005

    Tang S, Zhu Q J. Research progresses on flight dynamic modeling of airbreathing hypersonic vehicles[J]. Advances in Mechanics, 2011, 41(2):187-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201102005
    [93] 张杰, 王发民.乘波器的参数化设计研究[J].空气动力学学报, 2008, 26(1):115-118. doi: 10.3969/j.issn.0258-1825.2008.01.022

    Zhang J, Wang F M. Parametric waveriders design method study[J]. Acta Aerodynamica Sinica, 2008, 26(1):115-118. 〖WX)〗〖LL〗〖WX(4.5mm, 75.5mm〗 doi: 10.3969/j.issn.0258-1825.2008.01.022
    [94] You Y C, Zhu C X, Guo J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody[R]. AIAA-2009-7421, 2009.
    [95] Li Y Q, An P, Pan C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody[R]. AIAA-2014-3229, 2014.
    [96] Gollan R J, Smart M K. Design of modular shape-transition inlets for a conical hypersonic vehicle[J]. Journal of Propulsion & Power, 2010, 29(4):1-15. http://cn.bing.com/academic/profile?id=2eaab6ef73d0c179a6dd9644703dcbb8&encoded=0&v=paper_preview&mkt=zh-cn
    [97] 李怡庆, 周驯黄, 朱呈祥, 等.曲锥前体/三维内转进气道一体化设计与分析[J].航空动力学报, 2018, 33(1):87-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201801011

    Li Y Q, Zhou X H, Zhu C X, et al. Integration design and analysis for curved conical forebody and three dimensional inward turning inlet[J]. Journal of Aerospace Power, 2018, 33(1):87-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201801011
    [98] 肖尧, 崔凯, 李广利, 等.全乘波背部进气高超声速飞行器构型概念研究[C].第十八届全国激波与激波管学术会议, 北京, 2018.
    [99] 周扬, 黄国平.匹配飞行器前体的高外压缩内乘波进气道设计[C].第十五届推进系统气动热力学专业学术交流会, 杭州, 2015.
    [100] 乔文友, 余安远, 杨大伟, 等.基于前体激波的内转式进气道一体化设计[J].航空学报, 2018, 39(10):122078. http://d.old.wanfangdata.com.cn/Periodical/hkxb201810005

    Qiao W Y, Yu A Y, Yang D W, et al. Integration design of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):122078. http://d.old.wanfangdata.com.cn/Periodical/hkxb201810005
    [101] 乔文友, 余安远, 唐伟员.可匹配弹体的三维内收缩式高超声速进气道设计[C].第五届冲压发动机会议, 厦门, 2015.
  • 加载中
图(39)
计量
  • 文章访问数:  558
  • HTML全文浏览量:  406
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-24
  • 修回日期:  2019-04-15
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日