留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同液池深度下液滴撞击成泡现象

曹刚 余思潇 颜廷涧 董琪琪 黄潇 胡海豹

曹刚, 余思潇, 颜廷涧, 等. 不同液池深度下液滴撞击成泡现象[J]. 实验流体力学, 2019, 33(4): 95-99. doi: 10.11729/syltlx20190016
引用本文: 曹刚, 余思潇, 颜廷涧, 等. 不同液池深度下液滴撞击成泡现象[J]. 实验流体力学, 2019, 33(4): 95-99. doi: 10.11729/syltlx20190016
Cao Gang, Yu Sixiao, Yan Tingjian, et al. Blister formation phenomenon for droplet impact under different liquid pool depths[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 95-99. doi: 10.11729/syltlx20190016
Citation: Cao Gang, Yu Sixiao, Yan Tingjian, et al. Blister formation phenomenon for droplet impact under different liquid pool depths[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 95-99. doi: 10.11729/syltlx20190016

不同液池深度下液滴撞击成泡现象

doi: 10.11729/syltlx20190016
基金项目: 

国家自然科学基金项目 51879218

国家自然科学基金项目 51679203

中央高校基本科研业务费专项资金项目 3102018gxc007

详细信息
    作者简介:

    曹刚(1994-), 男, 甘肃平凉人, 硕士研究生。研究方向:液滴撞击行为及液滴定向运动。通信地址:陕西省西安市碑林区友谊西路127号西北工业大学航海学院高速水洞实验室(710072)。E-mail:1242258780@qq.com

    通讯作者:

    胡海豹, E-mail: huhaibao@nwpu.edu.cn

  • 中图分类号: O363

Blister formation phenomenon for droplet impact under different liquid pool depths

  • 摘要: 液池内液滴撞击成泡现象广泛存在,具有重要科研价值。利用高速摄像技术,测试了液滴从3~15m高度下落撞击不同深度液池时的液面成泡现象,给出了液池深度和液滴韦伯数We对撞击成泡的影响规律。结果表明:液滴撞击浅液池时,可以在撞击中心处形成1个圆泡,但撞击深液池时,则会先形成环形水泡,进而发展成1或2个圆泡,且成泡位置并不在撞击中心位置;在液滴撞击速度、液池深度、回落二次液滴等因素影响下,液滴撞击成泡现象呈现复杂的概率分布特性。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of the experimental device

    图  2  液滴撞击浅液池时水泡的形成过程(H=3mm、h=15m、We=6047)

    Figure  2.  The formation process of the blister when the droplets hit the shallow liquid pool (H=3mm, h=15m, We=6047)

    图  3  液滴撞击深液池时1个水泡的形成过程(H=30mm、h=12.5m、We=4509)

    Figure  3.  The formation process of one blister when the droplet hits the deep liquid pool (H=30mm, h=12.5m, We=4509)

    图  4  液滴撞击深液池时2个水泡的形成过程(H=30mm、h=12.5m、We=5087)

    Figure  4.  The formation process of two blisters when the droplet hits the deep liquid pool (H=30mm, h=12.5m, We=5087)

    图  5  相同液滴体积下成泡概率与韦伯数(We)关系

    Figure  5.  Relationship between blister formation probability and Weber number (We) under the same droplet volume

    图  6  相同液池深度下成泡概率与韦伯数(We)关系

    Figure  6.  Relationship between blister formation probability and Weber number (We) under the same liquid pool depth

  • [1] Liang G, Mudawar I. Review of mass and momentum interactions during drop impact on a liquid film[J]. International Journal of Heat and Mass Transfer, 2016, 101:577-599. doi: 10.1016/j.ijheatmasstransfer.2016.05.062
    [2] Bergeron V, Bonn D, Martin J Y, et al. Controlling droplet deposition with polymer additives[J]. Nature, 2000, 405(6788):772-775. doi: 10.1038/35015525
    [3] Thoroddsen S T, Thoraval M J, Takehara K, et al. Droplet splashing by a slingshot mechanism[J]. Physical Review Letters, 2011, 106:034501. doi: 10.1103/PhysRevLett.106.034501
    [4] Hao C L, Li J, Liu Y, et al. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces[J]. Nature Communications, 2015, 6:7986. doi: 10.1038/ncomms8986
    [5] van Dam D B, Christophe L C. Experimental study of the impact of an ink-jet printed droplet on a solid substrate[J]. Physics of Fluids, 2004, 16(9):3403-3414. doi: 10.1063/1.1773551
    [6] Worthington A M, Cole R S. Impact with a liquid surface, studied by means of instantaneous photography[J]. Proceedings of the Royal Society of London, 1895-1896, 59:250-251. https://www.researchgate.net/publication/268023129_Impact_with_a_Liquid_Surface_Studied_by_the_Aid_of_Instantaneous_Photography
    [7] Gauthier A, Symon S, Clanet C, et al. Water impacting on superhydrophobic macrotextures[J]. Nature Communications, 2015, 6:8001. doi: 10.1038/ncomms9001
    [8] Wildeman S, Visser C W, Sun C, et al. On the spreading of impacting drops[J]. Journal of Fluid Mechanics, 2016, 805:636-655. doi: 10.1017/jfm.2016.584
    [9] Liang G T, Guo Y L, Yang Y, et al. Spreading and splashing during a single drop impact on an inclined wetted surface[J]. Acta Mechanica, 2013, 224(12):2993-3004. doi: 10.1007/s00707-013-0910-6
    [10] 廖斌, 张桂夫, 王鲁海, 等.冲击作用下液滴在环境液体中的变形破碎行为[J].实验流体力学, 2016, 30(5):9-16. http://www.syltlx.com/CN/abstract/abstract10961.shtml

    Liao B, Zhang G F, Wang L H, et al. Deformation and breakup behaviors of a drop in ambient liquid under impact[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5):9-16. http://www.syltlx.com/CN/abstract/abstract10961.shtml
    [11] Weiss D A, Yarin A L. Single drop impact onto liquid films:neck distortion, jetting, tiny bubble entrainment, and crown formation[J]. Journal of Fluid Mechanics, 1999, 385:229-254. doi: 10.1017/S002211209800411X
    [12] Chandra S. Droplet Impact on Solid Surfaces[M]//Basu S, Agarwal A K, Mukhopadhyay A, et al. Droplet and Spray Transport: Paradigms and Applications. Singapore: Springer Nature, 2018.
    [13] Yarin A L, Weiss D A. Impact of drops on solid surfaces:self-similar capillary waves, and splashing as a new type of kinematic discontinuity[J]. Journal of Fluid Mechanics, 1995, 283:141-173. doi: 10.1017/S0022112095002266
    [14] Sochan A, Beczek M, Mazur R, et al. The shape and dynamics of the generation of the splash forms in single-phase systems after drop hitting[J]. Physics of Fluids, 2018, 30(2):027103. doi: 10.1063/1.4998675
    [15] 孔上峰, 封锋, 邓寒玉.高韦伯数下煤油液滴的破碎机理研究[J].实验流体力学, 2017, 31(1):20-25. http://www.syltlx.com/CN/abstract/abstract10991.shtml

    Kong S F, Feng F, Deng H Y. Breakup of a kerosene droplet at high Weber numbers[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1):20-25. http://www.syltlx.com/CN/abstract/abstract10991.shtml
    [16] Xu L, Zhang W W, Nagel S R. Drop splashing on a dry smooth surface[J]. Physical Review Letters, 2005, 94(18):184505. doi: 10.1103/PhysRevLett.94.184505
    [17] Weickgenannt C M, Zhang Y Y, Sinha-Ray S, et al. Inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces[J]. Physical Review E, 2011, 84(3):036310. doi: 10.1103/PhysRevE.84.036310
    [18] 孙炎俊, 赵丹阳.液滴撞击高温曲面动力学特性试验研究[J].表面工程与再制造, 2018, 18(2):28-32. doi: 10.3969/j.issn.1672-3732.2018.02.013

    Sun Y J, Zhao D Y. Experimental study on dynamic characteristics of droplet impacting on high temperature surface[J]. Surface Engineering and Remanufacturing, 2018, 18(2):28-32. doi: 10.3969/j.issn.1672-3732.2018.02.013
    [19] 李栋, 王鑫, 高尚文, 等.单液滴撞击超疏水冷表面的反弹及破碎行为[J].化工学报, 2017, 68(6):2473-2482. http://d.old.wanfangdata.com.cn/Periodical/hgxb201706030

    Li D, Wang X, Gao S W, et al. Rebounding and splashing behavior of single water droplet impacting on cold superhydrophobic surface[J]. CIESC Journal, 2017, 68(6):2473-2482. http://d.old.wanfangdata.com.cn/Periodical/hgxb201706030
    [20] 梁刚涛, 沈胜强, 郭亚丽, 等.实验观测液滴撞击倾斜表面液膜的特殊现象[J].物理学报, 2013, 62(8):084707. http://d.old.wanfangdata.com.cn/Periodical/wlxb201308054

    Liang G T, Shen S Q, Guo Y L, et al. Special phenomena of droplet impact on an inclined wetted surface with experimental observation[J]. Acta Physica Sinica, 2013, 62(8):084707. http://d.old.wanfangdata.com.cn/Periodical/wlxb201308054
    [21] Liang G T, Guo Y L, Shen S Q, et al. Crown behavior and bubble entrainment during a drop impact on a liquid film[J]. Theoretical and Computational Fluid Dynamics, 2014, 28(2):159-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ffdde6781e32e1c6037cba2f89bd16be
    [22] Lee S H, Hur N, Kang S. A numerical analysis of drop impact on liquid film by using a level set method[J]. Journal of Mechanical Science and Technology, 2011, 25(10):2567-2572. doi: 10.1007/s12206-011-0613-7
    [23] Deegan R D, Brunet P, Eggers J. Complexities of splashing[J]. Nonlinearity, 2007, 21(1):C1-C11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f53cf367f1e80ccdff5367f1a7026461
    [24] Pan K L, Hung C Y. Droplet impact upon a wet surface with varied fluid and surface properties[J]. Journal of Colloid and Interface Science, 2010, 352(1):186-193. doi: 10.1016/j.jcis.2010.08.033
    [25] Wal R L V, Berger G M, Mozes S D. The splash/non-splash boundary upon a dry surface and thin fluid film[J]. Experiments in Fluids, 2006, 40(1):53-59. doi: 10.1007/s00348-005-0045-1
    [26] 郭加宏, 戴世强, 代钦.液滴冲击液膜过程实验研究[J].物理学报, 2010, 59(4):2601-2609. http://d.old.wanfangdata.com.cn/Periodical/wlxb201004067

    Guo J H, Dai S Q, D Q. Experimental research on the droplet impacting on the liquid film[J]. Acta Physica Sinica, 2010, 59(4):2601-2609. http://d.old.wanfangdata.com.cn/Periodical/wlxb201004067
    [27] Cossali G E, Coghe A, Marengo M. The impact of a single drop on a wetted solid surface[J]. Experiments in Fluids, 1997, 22(6):463-472. doi: 10.1007/s003480050073
    [28] Okawa T, Shiraishi T, Mori T. Production of secondary drops during the single water drop impact onto a plane water surface[J]. Experiments in Fluids, 2006, 41(6):965-974. doi: 10.1007/s00348-006-0214-x
    [29] 梁刚涛, 郭亚丽, 沈胜强.液滴撞击液膜的射流与水花形成机理分析[J].物理学报, 2013, 62(2):024705. http://d.old.wanfangdata.com.cn/Periodical/wlxb201302054

    Liang G T, Guo Y L, Shen S Q. Analysis of liquid sheet and jet flow mechanism after droplet impinging onto liquid film[J]. Acta Physica Sinica, 2013, 62(2):024705. http://d.old.wanfangdata.com.cn/Periodical/wlxb201302054
    [30] Rieber M, Frohn A. A numerical study on the mechanism of splashing[J]. International Journal of Heat and Fluid Flow, 1999, 20(5):455-461. doi: 10.1016/S0142-727X(99)00033-8
    [31] 叶学民, 李明兰, 张湘珊, 等.表面弹性和分离压耦合作用下的垂直液膜排液过程[J].物理学报, 2018, 67(16):164701. doi: 10.7498/aps.67.20180349

    Ye X M, Li M L, Zhang X S, et al. Coupling effects of surface elasticity and disjoining pressure on film drainage process[J]. Acta Physica Sinica, 2018, 67(16):164701. doi: 10.7498/aps.67.20180349
    [32] Mukherjee S, Abraham J. Crown behavior in drop impact on wet walls[J]. Physics of Fluids, 2007, 19(5):052103 doi: 10.1063/1.2736085
  • 加载中
图(6)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  96
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-17
  • 修回日期:  2019-02-20
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日