留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转爆震发动机轴向脉冲爆震模态的实验研究

马虎 谢宗齐 邓利 薛赛男 周长省

马虎, 谢宗齐, 邓利, 等. 旋转爆震发动机轴向脉冲爆震模态的实验研究[J]. 实验流体力学, 2019, 33(4): 33-38, 64. doi: 10.11729/syltlx20190015
引用本文: 马虎, 谢宗齐, 邓利, 等. 旋转爆震发动机轴向脉冲爆震模态的实验研究[J]. 实验流体力学, 2019, 33(4): 33-38, 64. doi: 10.11729/syltlx20190015
Ma Hu, Xie Zongqi, Deng Li, et al. Experimental study on the longitudinal pulse detonation in rotating detonation engine[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 33-38, 64. doi: 10.11729/syltlx20190015
Citation: Ma Hu, Xie Zongqi, Deng Li, et al. Experimental study on the longitudinal pulse detonation in rotating detonation engine[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 33-38, 64. doi: 10.11729/syltlx20190015

旋转爆震发动机轴向脉冲爆震模态的实验研究

doi: 10.11729/syltlx20190015
基金项目: 

国家自然科学基金项目 51606100

中央高校基本科研业务费专项资金项目 309171B8806

详细信息
    作者简介:

    马虎(1986-), 男, 安徽滁州人, 副教授, 博士。研究方向:爆震燃烧及其推进技术。通信地址:南京市玄武区常陵卫200号南京理工大学机械工程学院(210094)。E-mail:mahuokok@163.com

    通讯作者:

    马虎, E-mail: mahuokok@163.com

  • 中图分类号: O382

Experimental study on the longitudinal pulse detonation in rotating detonation engine

  • 摘要: 实验研究了环形燃烧室中的轴向脉冲爆震现象,结合高频动态压力测量以及尾部高速摄影,对轴向脉冲爆震模态的工作过程进行了分析。实验结果表明,对于氢气与空气混合物,当出口阻塞比大于或等于0.6且出口最小截面积处的质量通量大于200 kg/(m2·s)时,燃烧室出现轴向传播的爆震波;爆震波在每个周期内将经历解耦与重新起爆的过程,出口截面反射的激波在燃烧室头部发展成为爆震波,并伴随剧烈发光现象。爆震波在周期内的平均传播速度与燃烧产物声速相当,采用线性声学理论可以对该模态下的工作频率进行较好的预测。
  • 图  1  实验系统示意图

    Figure  1.  Sketch of experimental setup

    图  2  喷注结构示意图

    Figure  2.  Sketch of injection configuration

    图  3  传感器与离子探针安装位置

    Figure  3.  Position of measurement holes

    图  4  质量流率196.7g/s,出口阻塞比为0.6,当量比为1.63的信号特征

    Figure  4.  Signal characteristics with air mass flow rate 196.7g/s, blockage ratio 0.6, equivalence ratio 1.63

    图  5  质量流率196.7g/s,出口阻塞比为0.7,当量比为1.63的信号特征

    Figure  5.  Signal characteristics with air mass flow rate 196.7g/s, blockage ratio 0.7, equivalence ratio 1.63

    图  6  质量流率196.7g/s,出口阻塞比为0.7,当量比为1.63的尾部高速摄影

    Figure  6.  High speed images under the condition of the air mass flow rate 196.7g/s, blockage ratio 0.7, and equivalence ratio 1.63

    图  7  轴向工作模态

    Figure  7.  Longitudinal pulse detonation mode

    图  8  轴向脉冲爆震模态下火焰传播过程[18]

    Figure  8.  Shock and flame propagation under longitudinal pulse detonation mode[18]

    图  9  轴向脉冲工作模态频率

    Figure  9.  Operation frequency at longitudinal pulse detonation mode

    图  10  线性声学理论计算偏差

    Figure  10.  Deviation between the linear acoustictheory and the experimental results

  • [1] Wolański P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158. http://d.old.wanfangdata.com.cn/Periodical/yhxb201801013
    [2] Anand V, George A S, Driscoll R, et al. Investigation of rotating detonation combustor operation with H2-air mixtures[J]. International Journal of Hydrogen Energy, 2016, 41(2):1281-1292. doi: 10.1016/j.ijhydene.2015.11.041
    [3] Russo R M, King P I, Schauer F R, et al. Characterization of pressure rise across a continuous detonation engine[R]. AIAA-2011-6046, 2011.
    [4] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonations[J]. Journal of Propulsion and Power, 2006, 22(6):1204-1216. doi: 10.2514/1.17656
    [5] Liu S, Liu W, Lin Z, et al. Experimental research on the propagation characteristics of continuous rotating detonation wave near the operating boundary[J]. Combustion Science and Technology, 2015, 187(11):1790-1804. doi: 10.1080/00102202.2015.1019620
    [6] George A S, Driscoll R, Anand V, et al. On the existence and multiplicity of rotating detonations[J]. Proceedings of the Combustion Institute, 2016, 36(2):2691-2698. https://www.sciencedirect.com/science/article/pii/S1540748916301900
    [7] Lin W, Zhou J, Liu S, et al. Experimental study on propagation mode of H2/air continuously rotating detonation wave[J]. International Journal of Hydrogen Energy, 2015, 40(4):1980-1993. doi: 10.1016/j.ijhydene.2014.11.119
    [8] Rankin B A, Richardson D R, Caswell A W, et al. Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine[J]. Combustion and Flame, 2017, 176:12-22. doi: 10.1016/j.combustflame.2016.09.020
    [9] Frolov S M, Aksenov V S, Ivanov V S, et al. Large-scale hydrogen-air continuous detonation combustor[J]. International Journal of Hydrogen Energy, 2015, 40(3):1616-1623. doi: 10.1016/j.ijhydene.2014.11.112
    [10] Roy A, Ferguson D H, Sidwell T, et al. Experimental study of rotating detonation combustor performance under preheat and back pressure operation[R]. AIAA-2017-1065, 2017.
    [11] Anand V, George A S, Driscoll R, et al. Longitudinal pulsed detonation instability in a rotating detonation combustor[J]. Experimental Thermal and Fluid Science, 2016, 77:212-225. doi: 10.1016/j.expthermflusci.2016.04.025
    [12] Zhou R, Wang J P. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines[J]. Combustion and Flame, 2012, 159(12):3632-3645. doi: 10.1016/j.combustflame.2012.07.007
    [13] Fotia M L, Schauer F, Kaemming T, et al. Experimental study of the performance of a rotating detonation engine with nozzle[J]. Journal of Propulsion and Power, 2015, 31(6):674-681. https://www.researchgate.net/publication/304047379_Experimental_Study_of_the_Performance_of_a_Rotating_Detonation_Engine_with_Nozzle
    [14] 林伟, 周进, 林志勇, 等. H2/Air连续旋转爆震发动机推力测试(Ⅰ)单波模态下的推力[J].推进技术, 2015, 36(4):495-503.

    Lin W, Zhou J, Lin Z Y, et al. Thrust measurement of H2/Air continuously rotating detonation engine(Ⅰ) thrust under single wave mode[J]. Journal of Propulsion Technology, 2015, 36(4):495-503.
    [15] 林伟, 周进, 林志勇, 等. H2/Air连续旋转爆震发动机推力测试(Ⅱ)-双波模态下的推力[J].推进技术, 2015, 36(5):641-649. http://www.cnki.com.cn/Article/CJFDTotal-TJJS201505001.htm

    Lin W, Zhou J, Lin Z Y, et al. Thrust measurement of H2/Air continuously rotating detonation engine(Ⅱ) thrust under dual wave mode[J]. Journal of Propulsion Technology, 2015, 36(5):641-649. http://www.cnki.com.cn/Article/CJFDTotal-TJJS201505001.htm
    [16] DeBarmore N D, King P I, Schauer F R, et al. Nozzle guide vane integration into rotating detonation engine[R]. AIAA-2013-1030, 2013.
    [17] Higashi J, Nakagami S, Matsuoka K, et al. Experimental study of the disk-shaped rotating detonation turbine engine[R]. AIAA-2017-1286, 2017.
    [18] Bykovskii F A, Vedernikov E F. Continuous detonation of a subsonic flow of a propellant[J]. Combustion, Explosion and Shock Waves, 2003, 39(3):323-334. doi: 10.1023/A:1023800521344
    [19] Wang C, Liu W, Liu S, et al. Experimental investigation on detonation combustion patterns of hydrogen/vitiated air within annular combustor[J]. Experimental Thermal and Fluid Science, 2015, 66:269-278. doi: 10.1016/j.expthermflusci.2015.02.024
    [20] Yang C, Wu X, Ma H, et al. Experimental research on initiation characteristics of a rotating detonation engine[J]. Experimental Thermal and Fluid Science, 2016, 71:154-163. doi: 10.1016/j.expthermflusci.2015.10.019
    [21] Lieuwen T C. Unsteady combustor physics[M]. Cambridge:Cambridge University Press, 2012.
  • 加载中
图(10)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  199
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-14
  • 修回日期:  2019-04-25
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日