留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

背景波系下的隔离段激波串运动特性及其流动机理研究进展

徐珂靖 常军涛 李楠 鲍文 于达仁

徐珂靖, 常军涛, 李楠, 等. 背景波系下的隔离段激波串运动特性及其流动机理研究进展[J]. 实验流体力学, 2019, 33(3): 31-42. doi: 10.11729/syltlx20180196
引用本文: 徐珂靖, 常军涛, 李楠, 等. 背景波系下的隔离段激波串运动特性及其流动机理研究进展[J]. 实验流体力学, 2019, 33(3): 31-42. doi: 10.11729/syltlx20180196
Xu Kejing, Chang Juntao, Li Nan, et al. Recent research progress on motion characteristics and flow mechanism of shock train in an isolator with background waves[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 31-42. doi: 10.11729/syltlx20180196
Citation: Xu Kejing, Chang Juntao, Li Nan, et al. Recent research progress on motion characteristics and flow mechanism of shock train in an isolator with background waves[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 31-42. doi: 10.11729/syltlx20180196

背景波系下的隔离段激波串运动特性及其流动机理研究进展

doi: 10.11729/syltlx20180196
基金项目: 

国家自然科学基金项目 51722601

详细信息
    作者简介:

    徐珂靖(1987-), 男, 浙江宁波人, 博士研究生.研究方向:激波串运动特性.通信地址:黑龙江省哈尔滨市南岗区一匡街2号哈工大科学园知源楼(150001).E-mail:648460636@qq.com

    通讯作者:

    常军涛, E-mail:changjuntao@hit.edu.cn

  • 中图分类号: V211.48

Recent research progress on motion characteristics and flow mechanism of shock train in an isolator with background waves

  • 摘要: 对高超声速进气道-隔离段激波串在复杂背景波系下的突跳运动特性及其流动机理的最新研究进展进行了综述,涵盖了背景波系作用下的激波串运动特性、突跳机理和突跳运动特性的数学描述方法,以期对高超声速进气道相关研究工作提供一定的参考。首先,对固定背景波系和变化背景波系下的激波串运动特性和突跳机制进行阐述,指出隔离段壁面压力顺压力梯度和逆压力梯度的交替变化是激波串突跳特性产生的内在物理机制。其次,对背景流场下隔离段激波串突跳运动的触发机理和触发条件进行了讨论。最后,基于对运动特性和突跳机制的认识,尝试给出了背景波系作用下的隔离段激波串运动特性的数学模型,为激波串前缘位置控制提供参考。
  • 图  1  激波串在隔离段不同位置前移速度变化[6]

    Figure  1.  Velocities of a shock train moved forward in an isolator[6]

    图  2  隔离段内的速度分布[7]

    Figure  2.  Velocity contour of the flowfield in an isolator[7]

    图  3  激波串过程突跳纹影序列和壁面压力分布[13]

    Figure  3.  Schlierens and pressure distributions when a rapid movement of shock train occured[13]

    图  4  背景波系伸展过程中激波串突跳现象的数值纹影序列[16]

    Figure  4.  Sequence of schlierens when a rapid movement of shock train occurred[16]

    图  5  激波串下缘突跳前后的壁面压力分布[15]

    Figure  5.  Pressure distributions when a rapid movement of shock train occured[15]

    图  6  激波串前缘位置随当量比变化过程[22]

    Figure  6.  Climbing path of a shock train[22]

    图  7  激波串流场结构示意图[24]

    Figure  7.  Schematic of the flowfield with a shock train[24]

    图  8  等效喉道压缩结构示意图[25]

    Figure  8.  Sketch of the throat-like structure at shock train head[25]

    图  9  激波串前缘初始激波和附面层流场结构示意图[25]

    Figure  9.  Sketch of flowfield at shock train head[25]

    图  10  激波串前缘初始激波角与收缩极限的关系[25]

    Figure  10.  Relationship between angle of initial shock to contraction ratio[25]

    图  11  隔离段马赫数与收缩极限的关系[25]

    Figure  11.  Relationship between Mach number to the minimum value of contraction ratio[25]

    图  12  激波串突跳前后纹影图[25]

    Figure  12.  Schlierens of the flowfield when a rapid movement of shock train occurred[25]

    图  13  突跳前后等效喉道收缩比变化[25]

    Figure  13.  Contraction ratio of the throat-like structure when a rapid movement of shock train occurred[25]

    图  14  激波串前缘最小收缩极限分析示意图[27]

    Figure  14.  Sketch of the analysis method for the minimum value of the contraction ratio[27]

    图  15  角涡流线图[28]

    Figure  15.  Sketch of streamlines of corner vortex[28]

    图  16  角涡和中部分离涡的流场可视化[29]

    Figure  16.  Visualization of corner vortex and central vortex[29]

    图  17  激波入射引起的激波附面层交互与壁面摩擦系数分布[30]

    Figure  17.  Shock-boundary layer interactions and friction coefficient distribution induced by incident shock[30]

    图  18  三维效应下的流场速度分布[31]

    Figure  18.  Velocity contours of flowfield with sidewall effect[31]

    图  19  试验段构型和压力测点布置[36]

    Figure  19.  Configuration of test sections and the pressure measuring points[36]

    图  20  背压和挡板角度变化时序:(a)工况D,(b)工况E,(c)工况F。时间根据试验时长进行了无量化处理[36]

    Figure  20.  Time histories of the backpressure ratio and the flap angle: (a) case D, (b) case E, (c) case F. The time is non-dimensionalized by the total duration[36]

    图  21  试验过程中典型压力时序[36]

    Figure  21.  Comparisons of typical pressure histories during the test conditions[36]

    图  22  工况C和F中激波串前缘轨迹对比:(a)上壁面,(b)下壁面。时间根据试验时长进行了无量化处理[36]

    Figure  22.  Comparisons of the trajectories of the shock train leading edge with case C and case F conditions at the top wall (a) and bottom wall (b). The time is non-dimensionalized by the total duration[36]

    图  23  激波串运动物理过程简图[37]

    Figure  23.  Physical process of the shock train movement[37]

    图  24  无激波入射下低阶模型激波串前缘预估与试验结果比较[37]

    Figure  24.  Trajectories of the shock train leading edge estimated by the low-order model compared with the experimental values[37]

    图  25  模型预测激波串动态特性与数值模拟结果对比,背压压比变化为:(a) 2.83~3.05, (b) 3.05~3.39, (c) 3.39~3.62[37]

    Figure  25.  Dynamic features of the shock train compared with the CFD results, where backpressure ratio is from (a) 2.83 to 3.05, (b) 3.05 to 3.39, (c) 3.39 to 3.62[37]

    图  26  有激波入射下低阶模型激波串前缘预估与试验结果比较[37]

    Figure  26.  Trajectories of the shock train leading edge estimated by the low-order model compared with the experimental values under incident shocks[37]

    表  1  激波串运动过程的激波串前缘收缩比测量值[27]

    Table  1.   Measured values of contraction ratio of the throat-like structure at shock train head[27]

    Data No. Motion state Actual CR Explain Correct
    1 Rapid motion 0.41 < 0.43 Yes
    2 Back to slow 0.50 >0.48 Yes
    3 Rapid motion 0.41 < 0.43 Yes
    4 Back to slow 0.56 >0.48 Yes
    5 Rapid motion 0.41 < 0.43 Yes
    6 Back to slow 0.50 >0.48 Yes
    7 Rapid motion 0.41 < 0.43 Yes
    8 Back to slow 0.51 >0.48 Yes
    9 Rapid motion 0.41 < 0.43 Yes
    下载: 导出CSV
  • [1] Curran E T, Heiser W H, Pratt D T. Fluid phenomena in scramjet combustion systems[J]. Annual review of Fluid Mechanics, 1996, 28(1):323-360 doi: 10.1146/annurev.fl.28.010196.001543
    [2] Waltrup P J, Billig F S. Structure of shock waves in cylindrical ducts[J]. AIAA Journal, 1973, 11(10):1404-1408. doi: 10.2514/3.50600
    [3] Billig F S. Research on supersonic combustion[J]. Journal of Propulsion and Power, 1993, 9(4):499-514. doi: 10.2514/3.23652
    [4] 张堃元, 王成鹏, 杨建军, 等.带高超进气道的隔离段流动特性[J].推进技术, 2002, 23(4):311-314. doi: 10.3321/j.issn:1001-4055.2002.04.012

    Zhang K Y, Wang C P, Yang J J, et al. Investigation of flow in isolator of hypersonic inlet[J]. Journal of Propulsion Technology, 2002, 23(4):311-314. doi: 10.3321/j.issn:1001-4055.2002.04.012
    [5] Wang C P, Zhang K Y, Yang J J. Analysis of flows in scramjet isolator combined with hypersonic inlet[R]. AIAA-2005-24, 2005.
    [6] Wagner J L, Yuceil K B, Valdivia A, et al. Experimental investigation of unstart in an inlet/isolator or model in Mach 5 flow[J]. AIAA Journal, 2009, 47(6):1528-1542. doi: 10.2514/1.40966
    [7] Wagner J L, Yuceil K B, Clemens N T. Velocimetry measurements of unstart of an inlet-isolator model in Mach 5 flow[J]. AIAA Journal, 2010, 48(9):1875-1888. doi: 10.2514/1.J050037
    [8] 张航, 谭慧俊, 孙姝.进口斜激波、膨胀波干扰下等直隔离段内的激波串特性[J].航空学报, 2010, 31(9):1733-1739. http://d.old.wanfangdata.com.cn/Periodical/hkxb201009005

    Zhang H, Tan H J, Sun S. Characteristics of shock train in a straight isolator with interference of incident shock waves and corner expansion waves[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1733-1739. http://d.old.wanfangdata.com.cn/Periodical/hkxb201009005
    [9] 田旭昂, 王成鹏, 程克明. Ma5斜激波串动态特性试验研究[J].推进技术, 2014, 35(8):1030-1039.

    Tian X A, Wang C P, Cheng K M. Experimental investigation of dynamic characteristics of oblique shock train in mach 5 flow[J]. Journal of Propulsion Technology, 2014, 35(8):1030-1039.
    [10] Tan H J, Sun S, Huang H X. Behavior of shock trains in a hypersonic inlet/isolator model with complex background waves[J]. Experiments in Fluids, 2012, 53(6):1647-1661. doi: 10.1007/s00348-012-1386-1
    [11] Huang H X, Sun S, Tan H J, et al. Characterization of two typical unthrottled flows in hypersonic inlet/isolator models[J]. Journal of Aircraft, 2015, 52(5):1715-1721. doi: 10.2514/1.C033190
    [12] Koo H, Raman V. Large-eddy simulation of a supersonic inlet-isolator[J]. AIAA Journal, 2012, 50(7):1596-1613. doi: 10.2514/1.J051568
    [13] Xu K J, Chang J T, Zhou W X, et al. Mechanism and prediction for occurrence of shock-train sharp forward movement[J]. AIAA Journal, 2016, 54(1):1403-1412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=260709d7c2fe50b58d7bdb3ff4625e54
    [14] Li N, Chang J T, Yu D R, et al. Mathematical model of shock-train path with complex background waves[J]. Journal of Propulsion and Power, 2017, 33(2):468-478. doi: 10.2514/1.B36234
    [15] Xu K J, Chang J T, Zhou W X, et al. Mechanism of shock train rapid motion induced by variation of attack angle[J]. Acta Astronautica, 2017, 140:18-26. doi: 10.1016/j.actaastro.2017.08.009
    [16] Dessornes O, Scherrer D, Novelli P. Tests of japhar dual mode ramjet engine[R]. AIAA-2001-1886, 2001.
    [17] Denis S R, Kau H P, Brandstetter A. Experimental study on transition between ramjet and scramjet modes in a dual-mode combustor[R]. AIAA 2003-7048, 2003.
    [18] Chun J, Scheurermann T, von Wolfersdorf J, et al. Experimental study on combustion mode transition in a scramjet with parallel injection[R]. AIAA-2006-8063, 2006.
    [19] Le D B, Goyne C P, Krauss R H, et al. Experimental study of a dual-mode scramjet isolator[J]. Journal of Propulsion and Power, 2008, 24(5):1050-1057. doi: 10.2514/1.32591
    [20] Yu D R, Cui T, Bao W. Catastrophe, hysteresis and bifurcation of mode transition in scramjet engines and its model[J]. Science in China Series E:Technological Sciences, 2009, 52(6):1543-1550. doi: 10.1007/s11431-009-0181-6
    [21] Kobayashi K, Tomioka S, Kato K, Performance of a dual-mode combustor with multistaged fuel injection[J]. Journal of Propulsion and Power, 2006, 22(3):518-526. doi: 10.2514/1.19294
    [22] Qin B, Chang J T, Jiao X L, et al. Unstart margin characterization method of scramjet considering isolator-combustor interactions[J]. AIAA Journal, 2015, 53(2):493-500. doi: 10.2514/1.J053547
    [23] Gnani F, Zare-Behtash H, Kontis K. Pseudo-shock waves and their interactions in high-speed intakes[J]. Progress in Aerospace Science, 2016, 82:36-56. doi: 10.1016/j.paerosci.2016.02.001
    [24] Tu Q Y, Segal C. Isolator/combustion chamber interactions during supersonic combustion[J]. Journal of Propulsion and Power, 2010, 26(1):182-186. doi: 10.2514/1.46156
    [25] Xu K J, Chang J T, Li N, et al. Preliminary investigation of limits of shock train jumps in a hypersonic inlet-isolator[J]. European Journal of Mechanics-B/Fluids, 2018, 72:664-675. doi: 10.1016/j.euromechflu.2018.07.015
    [26] VeillardX, Tahir R, Timofeev E, et al. Limiting contractions for starting simple ramp-type scramjet intakes with overboard spillage[J]. Journal of Propulsion and Power, 2008, 24(5):1042-1049. doi: 10.2514/1.34547
    [27] Xu K J, Chang J T, Li N, et al. Experimental investigation of mechanism and limits for shock train rapid forward movement[J]. Experimental Thermal and Fluid Science, 2019, 98:336-345. https://www.sciencedirect.com/science/article/pii/S0894177718303959
    [28] Huang H X, Tan H J, Sun S, et al. Evolution of supersonic corner vortex in a hypersonic inlet/isolator model[J]. Physics of Fluids, 2016, 28(12):126101. doi: 10.1063/1.4971448
    [29] Funderburk M, Narayanaswamy V. Experimental investigation of primary and corner shock boundary layer interactions at mild back pressure ratios[J]. Physics of Fluids, 2016, 28(8):086102. doi: 10.1063/1.4960963
    [30] Pirozzoli S, Grasso F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at Ma=2.25[J]. Physics of Fluids, 2006, 18(6):065113. doi: 10.1063/1.2216989
    [31] Bermejo-Moreno I, Campo L, Larsson J, et al. Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations[J]. Journal of Fluid Mechanics, 2014, 758:5-62. doi: 10.1017/jfm.2014.505
    [32] Chakravarthy R V K, Nair V, Muruganandam T M, et al. Analytical and numerical study of normal shock response in a uniform duct[J]. Physics of Fluids, 2018, 30(8):086101. doi: 10.1063/1.5027903
    [33] Bruce P J K, Babinsky H. Unsteady shock wave dynamics[J]. Journal of Fluid Mechcanics, 2008, 603:463-473. doi: 10.1017/S0022112008001195
    [34] Cui T, Wang Y, Yu D R. Bistability and hysteresis in a nonlinear dynamic model of shock motion[J]. Journal of Aircraft, 2014, 51(5):1373-1379. doi: 10.2514/1.C032175
    [35] Su W Y, Zhang K Y. Back-pressure effects on the hypersonic inlet-isolator pseudoshock motion[J]. Journal of Propulsion and Power, 2013, 29(6):1391-1399. doi: 10.2514/1.B34803
    [36] Li N, Chang J T, Xu K J, Yu D R, et al. Oscillation of the shock train in an isolator with incident shocks[J]. Physics of Fluids, 2018, 30(11):116102. doi: 10.1063/1.5053451
    [37] Li N, Chang J T, Xu K J, et al. Prediction dynamic model of shock train with complex background waves[J]. Physics of Fluids, 2017, 29(11):116103. doi: 10.1063/1.5000876
  • 加载中
图(26) / 表(1)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  424
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-13
  • 修回日期:  2019-04-29
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日