留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单相机光场PIV的逆压湍流边界层测量

赵洲 丁俊飞 施圣贤

赵洲, 丁俊飞, 施圣贤. 基于单相机光场PIV的逆压湍流边界层测量[J]. 实验流体力学, 2019, 33(2): 66-71. doi: 10.11729/syltlx20180192
引用本文: 赵洲, 丁俊飞, 施圣贤. 基于单相机光场PIV的逆压湍流边界层测量[J]. 实验流体力学, 2019, 33(2): 66-71. doi: 10.11729/syltlx20180192
Zhao Zhou, Ding Junfei, Shi Shengxian. Volumetric measurements of an adverse-pressure-gradient turbulent boundary layer using single-camera light-field PIV[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 66-71. doi: 10.11729/syltlx20180192
Citation: Zhao Zhou, Ding Junfei, Shi Shengxian. Volumetric measurements of an adverse-pressure-gradient turbulent boundary layer using single-camera light-field PIV[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 66-71. doi: 10.11729/syltlx20180192

基于单相机光场PIV的逆压湍流边界层测量

doi: 10.11729/syltlx20180192
基金项目: 

国家自然科学基金项目 11472175

国家自然科学基金项目 11772197s

详细信息
    作者简介:

    赵洲(1994-), 男, 山西朔州人, 博士研究生。研究方向:光场三维测试技术。通信地址:上海交通大学机械与动力工程学院(200240)。E-mail:zhaozhou1994@sjtu.edu.cn

    通讯作者:

    施圣贤, E-mail:kirinshi@stju.edu.cn

  • 中图分类号: V211.7

Volumetric measurements of an adverse-pressure-gradient turbulent boundary layer using single-camera light-field PIV

  • 摘要: 作为一种新兴的体三维粒子图像测速技术,光场单相机三维粒子图像测速技术(Single-Camera Light-Field Particle Image Velocimetry,LF-PIV)能够仅用单个相机获得三维速度场,其结果已在许多复杂三维流动测量中得到验证。LF-PIV的优势主要在于其紧凑简便的硬件设备以及对光学窗口较宽松的要求。应用LF-PIV技术对一个自相似的逆压湍流边界层(Adverse Pressure Gradient Turbulent Boundary Layer,APG-TBL)进行测量,该实验在澳大利亚莫纳什大学(Monash University)航空航天与燃烧湍流研究实验室(Laboratory for Turbulence Research in Aerospace and Combustion,LTRAC)水洞中完成。实验对远、近壁面测量所得到的各600组瞬态三维流场数据进行分析验证,并与相同工况下的2D-PIV实验结果对比,证明基于DRT-MART重构技术的LF-PIV能够进行基本的湍流边界层测量。
  • 图  1  光场PIV技术示意图

    Figure  1.  Schematic of the LF-PIV

    图  2  LTRAC实验水洞及LF-PIV对上下两层边界层测量实验示意图

    Figure  2.  Schematic of the LTRAC water tunnel and the LF-PIV experimental setup of the inner and outer layer measurements

    图  3  (a) 激光光路实物图; (b)相机设置实物图; (c)粒子图像局部放大图。其中左上角红色六边形框表示微透镜的排布方式,框内为单个微透镜所成的像

    Figure  3.  (a) experimental setup of the laser path; (b) experimental setup of the LF-PIV system; (c) partially magnified particle image. The red hexagonal frame in the upper left corner indicates the arrangement of the micro lenses array, and the inside of the frame is the subimage formed by a single microlens

    图  4  LF-PIV对湍流边界层测量的实验结果,图示结果为时均流场,将远、近壁面两组测量结果进行拼合后的展示

    Figure  4.  Overview of averaged volumetric velocity field of APG-TBL measured by LF-PIV and assembled with inner and outer layer data. The outer flow is in the positive x-direction, and the wall lies here on the right-hand side

    图  5  (a) 主流方向速度分布曲线与2D-PIV结果对比图;(b)雷诺应力〈uu〉分布曲线与2D-PIV结果对比图;(c)雷诺应力〈vv〉分布曲线与2D-PIV结果对比图

    Figure  5.  (a) mean streamwise velocity profiles comparing with 2D-PIV; (b) Reynolds stress 〈uu〉 profiles comparing with 2D-PIV; (c) Reynolds stress 〈vv〉 profiles comparing with 2D-PIV

  • [1] Ding J F, Wang J H, Liu Y Z, et al. Dense ray tracing based reconstruction algorithm for light-field volumetric particle image velocimetry[C]. The 7th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion. Melbourne, Australia, 2015.
    [2] Fahringer T W, Lynch K P, Thurow B S. Volumetric particle image velocimetry with a single plenoptic camera[J]. Measurement Science & Technology, 2015, 26(11):115201. http://www.ingentaconnect.com/content/iop/mst/2015/00000026/00000011/art115201
    [3] Shi S X, Wang J H, Ding J F, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement & Instrumentation, 2016, 49:70-88. http://www.sciencedirect.com/science/article/pii/S0955598616300371
    [4] 丁俊飞, 许晟明, 施圣贤.光场单相机三维流场测试技术[J].实验流体力学, 2016, 30(6):50-58. http://www.syltlx.com/CN/abstract/abstract10980.shtml

    Ding J F, Xu S M, Shi S X. Light field volumetric particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6):50-58. http://www.syltlx.com/CN/abstract/abstract10980.shtml
    [5] Li H T, Ding J F, Qu W H, et al. Investigation of 3D flow behavior inside a rod bundle using Light Field-PIV and the matched refractive index techniques[C]. The International Symposium on Particle Image Velocimetry. Busan, Korea, 2017.
    [6] Xu S M, Ding J F, Zhao Z, et al. 3D flow measurements of circular air jet at Re=30, 000 using light field particle image velocimetry[C]. The International Symposium on Particle Image Velocimetry. Busan, Korea, 2017.
    [7] Bolton J T, Thurow B, Arora N, et al. Single camera 3D measurement of a shock wave-turbulent boundary layer interaction[C]. The 55th AIAA Aerospace Sciences Meeting. Grapevine, Texas, 2017.
    [8] Shi S X, Ding J F, New T H, et al. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique[J]. Experiments in Fluids, 2017, 58(7):78. doi: 10.1007/s00348-017-2365-3
    [9] Shi S X, Ding J F, Atkinson C, et al. A detailed comparison of single-camera light-field PIV and tomographic PIV[J]. Experiments in Fluids, 2018, 59(3):46. doi: 10.1007/s00348-018-2500-9
    [10] Atkinson C, Buchner A J, Soria J, et al. Experimental mea-surements of a self-similar adverse pressure gradient turbulent boundary layer[C]. 20th Australasian Fluid Mechanics Conference. Perth, Australia, 2016.
    [11] Atkinson C, Buchner A J, Soria J, et al. Time-resolved PIV measurements of a self-similar adverse pressure gradient turbulent boundary layer[C]. The 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics. Lisbon, Portugal, 2016.
    [12] Shi S X, Ding J F, New T H. Dense ray tracing based reconstruction algorithm for light field PIV and comparative study with Tomo-PIV[C]. The 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics. Lisbon, Portugal, 2016.
    [13] Atkinson C, Soria J. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry[J]. Experiments in Fluids, 2009, 47(4-5):553-568. doi: 10.1007/s00348-009-0728-0
    [14] Soria J. An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique[J]. Experimental Thermal & Fluid Science, 1996, 12(2):221-33. http://www.sciencedirect.com/science/article/pii/0894177795000860
    [15] Shi S X, Ding J F, New T H, et al. Volumetric calibration for single-camera light-field PIV[J]. Experiments in Fluids, 2019, 60(1):21. doi: 10.1007/s00348-018-2670-5
  • 加载中
图(5)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  128
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-04
  • 修回日期:  2019-01-27
  • 刊出日期:  2019-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日