留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半角7°圆锥马赫数6边界层转捩的自由飞实验

王宗浩 黄洁 石安华 宋强 廖东骏 柳森

王宗浩, 黄洁, 石安华, 等. 半角7°圆锥马赫数6边界层转捩的自由飞实验[J]. 实验流体力学, 2019, 33(4): 58-64. doi: 10.11729/syltlx20180185
引用本文: 王宗浩, 黄洁, 石安华, 等. 半角7°圆锥马赫数6边界层转捩的自由飞实验[J]. 实验流体力学, 2019, 33(4): 58-64. doi: 10.11729/syltlx20180185
Wang Zonghao, Huang Jie, Shi Anhua, et al. Free flight experiment on boundary layer transition of 7° half angle cone at Mach 6[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 58-64. doi: 10.11729/syltlx20180185
Citation: Wang Zonghao, Huang Jie, Shi Anhua, et al. Free flight experiment on boundary layer transition of 7° half angle cone at Mach 6[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 58-64. doi: 10.11729/syltlx20180185

半角7°圆锥马赫数6边界层转捩的自由飞实验

doi: 10.11729/syltlx20180185
基金项目: 

国家重点研发计划项目 2016YFA0401200

详细信息
    作者简介:

    王宗浩(1985-), 男, 河北辛集人, 硕士, 助理研究员。研究方向:弹道靶气动力实验技术, 高超声速边界层转捩机理、控制和预测。通信地址:四川省绵阳市二环路南段6号15信箱503分箱(621000)。E-mail:wangzh04@163.com

    通讯作者:

    柳森, E-mail: liusen@cardc.cn

  • 中图分类号: O354.4

Free flight experiment on boundary layer transition of 7° half angle cone at Mach 6

  • 摘要: 在气动物理靶上开展了半角7°圆锥的边界层转捩测量实验,模型材料为铝合金,表面采用氧化发黑处理或涂覆低热导率涂层,底径33mm,球头半径0.27~2.50mm,马赫数4.89~6.63,单位雷诺数4.8×107/m~5.2×107/m,总迎角0.8°~5.8°,采用阴影和红外辐射成像获得了模型边界层图像和转捩阵面形貌,测得转捩雷诺数介于2.4×106~5.6×106之间.结果表明:转捩雷诺数随迎角增大而减小;一定的球头钝化可以推迟转捩。
  • 图  1  CARDC气动物理靶示意图

    Figure  1.  Schematic of the CARDC's Aero-physics Range

    图  2  发黑铝合金模型与弹托

    Figure  2.  Black oxidation aluminum alloy cone models and sabots

    图  3  涂覆低热导率涂层的模型及弹托

    Figure  3.  Model with low thermal conductivity coating and sabots

    图  4  弹道靶转捩实验测试系统布置方案

    Figure  4.  Schematic of measurement system

    图  5  实验ZL03模型水平方向阴影图像(俯仰角5.0°,侧滑角2.9°)

    Figure  5.  Horizontal shadowgraph of test ZL03 (pitch angle 5.0°, yaw angle 2.9°)

    图  6  实验ZL03模型阴影图像两侧轮廓线上的涡尺度分布

    Figure  6.  Periodic scale distribution on both sides of the shadowgraph of test ZL03

    图  7  实验ZL03模型水平方向辐射温度图像

    Figure  7.  Thermal inferred result of test ZL03

    图  8  实验ZL07模型水平方向阴影图像(俯仰角0.6°, 侧滑角2.0°)

    Figure  8.  Horizontal shadowgraph of test ZL07 (pitch angle 0.6°, yaw angle 2.0°)

    图  9  实验ZL07模型阴影图像两侧轮廓线上的涡尺度分布

    Figure  9.  Periodic scale distribution on both sides of the shadowgraph of test ZL07

    图  10  实验模型的前光照片

    Figure  10.  The front lighted photo of tested model

    图  11  实验ZL07模型水平方向辐射温度图像

    Figure  11.  Thermal inferred result of test ZL07

    图  12  不同迎角下模型迎、背风侧转捩雷诺数对比

    Figure  12.  Transition Reynolds number comparison under different conditions

    表  1  弹道靶转捩实验状态参数表

    Table  1.   Test conditions

    No. Φ/mm L/mm R/mm Ra/μm v/(km·s-1) p/kPa T/℃ Ma Re/L/(107m-1) Re/106
    ZL03 32.91 130.63 0.46 0.88 1.70 44.34 27.6 4.89 4.82 6.30
    ZL04 32.89 130.69 0.45 0.88 2.05 37.40 24.9 5.92 4.95 6.47
    ZL05 32.93 132.66 0.27 0.88 2.17 37.06 25.0 6.27 5.19 6.88
    ZL07* 32.95 127.29 0.99 4.78 2.18 37.09 27.3 6.27 5.18 6.59
    ZL08 32.92 132.51 0.30 0.88 2.29 32.30 23.3 6.63 4.80 6.36
    ZL09 32.82 116.60 2.50 0.88 2.08 37.70 23.2 6.03 5.09 5.94
    ZL10* 32.92 130.69 0.45 1.56 2.15 37.72 28.0 6.18 5.18 6.77
    注:Φ为模型底径,L为模型长度,R为模型球头半径,Ra为模型表面粗糙度均值,v为模型飞行速度,p为靶室压力,T为靶室温度,Re/L为单位雷诺数,Re为模型雷诺数,标记*的实验模型表面为低热导率涂层。
    下载: 导出CSV

    表  2  弹道靶转捩实验测量结果

    Table  2.   Test result of ballistic range transition measurement

    No. R/mm Ma Re/L/(107m-1) 球头雷诺数/104 俯仰角/(°) 侧滑角/(°) 迎角/(°) 转捩距离/mm 转捩雷诺数/106
    迎风侧 背风侧 迎风侧 背风侧
    ZL03 0.46 4.89 4.82 4.43 5.0 2.9 5.8 50 60 2.41 2.89
    ZL04 0.45 5.92 4.95 4.45 0.8 0.2 0.8 104 113 5.16 5.60
    ZL05 0.27 6.27 5.19 2.80 -2.2 0.0 2.2 83 74 4.30 3.85
    ZL07 0.99 6.27 5.18 10.30 0.6 2.0 2.1 79 82 4.10 4.25
    ZL08 0.30 6.63 4.80 2.88 -0.7 1.7 1.8 86 114 4.12 5.46
    ZL09 2.50 6.03 5.09 25.50 -1.2 0.8 1.4 未转捩 未转捩 未转捩 未转捩
    ZL10 0.45 6.18 5.18 4.66 -0.6 4.9 4.9 63 57 3.28 2.96
    下载: 导出CSV
  • [1] Lau K Y. Hypersonic boundary-layer transition:application to high-speed vehicle design[J]. Journal of Spacecraft and Rockets, 2008, 45(2):176-183. doi: 10.2514/1.31134
    [2] Wilkins M E, Darsow J F. Finishing and inspection of model surfaces for boundary-layer-transition tests[R]. NASA Memo 1-19-59A, 1959.
    [3] James C S. Boundary-layer transition on hollow cylinders in supersonic free flight as affected by Mach number and a screwthread type of surface roughness[R]. NASA Memo 1-20-59A, 1959.
    [4] Potter J L. Boundary-layer transition on supersonic cones in an aeroballistic range[J]. AIAA Journal, 1975, 13(3):270-277. doi: 10.2514/3.49692
    [5] Sheetz N W Jr. Free-flight boundary layer transition investiga-tions at hypersonic speeds[R]. AIAA-1965-0127, 1965.
    [6] Reda D C. Boundary-layer transition experiments on sharp, slender cones in supersonic freeflight[J]. AIAA Journal, 1979, 17(8):803-810. doi: 10.2514/3.61231
    [7] Reda D C, Wilder M C, Bogdanoff D W, et al. Aerothermo-dynamic testing of ablative reentry vehicle nosetip materials in hypersonic ballistic-range environments[R]. AIAA-2004-6829, 2004.
    [8] Grinstead J H, Wilder M C, Reda D C, et al. Advanced spectroscopic and thermal imaging instrumentation for shock tube and ballistic range facilities[R]. RTO-EN-AVT-186, 2010.
    [9] Reda D C, Wilder M C, Prabhu D K. Transition experiments on blunt bodies with isolated roughness elements in hypersonic flight[J]. Journal of Spacecraft and Rockets, 2010, 47(5):828-835. doi: 10.2514/1.49112
    [10] Reda D C, Wilder M C, Prabhu D K. Transition experiments on slightly blunted cones with distributed roughness in hypersonic flight[J]. AIAA Journal, 2012, 50(10):2248-2254. doi: 10.2514/1.J051616
    [11] Reda D C, Wilder M C, Prabhu D K. Transition experiments on blunt cones with distributed roughness in hypersonic flight[J]. Journal of Spacecraft and Rockets, 2013, 50(3):504-508. doi: 10.2514/1.A32426
    [12] Wilder M C, Prabhu D K, Reda D C. The effects of surface roughness on turbulent heat transfer measured in hypersonic free flight[R]. AIAA-2014-0512, 2014.
    [13] Swanson T, Daniel D. Hypersonic boundary layer transition experiments in hypervelocity ballistic Range G[R]. AIAA-2016-2118, 2016.
    [14] 柳森, 王宗浩, 谢爱民, 等.高超声速锥柱裙模型边界层转捩的弹道靶实验[J].实验流体力学, 2013, 27(6):26-31. doi: 10.3969/j.issn.1672-9897.2013.06.005

    Liu S, Wang Z H, Xie A M, et al. Ballistic range experiments of hypersonic boundary layer transition on a cone-cylinder-flare configuration[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):26-31. doi: 10.3969/j.issn.1672-9897.2013.06.005
    [15] Wang Z H, Liu S, Xie A M, et al. Shadowgraph imaging and post-processing for hypersonic boundary layer transition in ballistic range[J]. Journal of Flow Visualization and Image Processing, 2015, 22(4):229-238. doi: 10.1615/JFlowVisImageProc.2016016555
    [16] 柳森, 黄洁, 李毅, 等.中国空气动力研究与发展中心的空间碎片超高速撞击试验研究进展[J].载人航天, 2011, 17(6):17-23. doi: 10.3969/j.issn.1674-5825.2011.06.004

    Liu S, Huang J, Li Y, et al. Recent advancement of hypervelocity impact tests at HAI, CARDC[J]. Manned Spaceflight, 2011, 17(6):17-23. doi: 10.3969/j.issn.1674-5825.2011.06.004
    [17] 柳森, 谢爱民, 黄洁, 等.超高速碰撞碎片云的激光阴影照相技术[J].实验流体力学, 2005, 19(2):35-39. doi: 10.3969/j.issn.1672-9897.2005.02.007

    Liu S, Xie A M, Huang J, et al. Laser shadowgraph for the visualization of hypervelocity impact debris cloud[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2):35-39. doi: 10.3969/j.issn.1672-9897.2005.02.007
    [18] Settles G S. Schlieren and shadowgraph techniques:visualizing phenomena in transparent media[M]. Berlin:Springer-Verlag, 2001.
    [19] Muir J F, Trujillo A A. Experimental investigation of the effects of nose bluntness, free-stream unit Reynolds number, and angle of attack on cone boundary layer transition at a Mach number of 6[R]. AIAA-72-0216, 1972.
    [20] 陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030

    Chen J Q, Tu G H, Zhang Y F, et al. Hypersnonic boundary layer transition:what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030
    [21] Bountin D A, Shiplyuk A N, Sidorenko A A. Experimental investigations of disturbance development in the hypersonic boundary layer on a conical model[C]//Laminar-Turbulent Transition: IUTAM Symposium. 1999: 475-480.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  98
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-19
  • 修回日期:  2019-04-19
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日