留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔压敏荧光粒子的制备与流场压力/速度测量的性能表征

谷丰 彭迪 温新 刘应征

谷丰, 彭迪, 温新, 等. 多孔压敏荧光粒子的制备与流场压力/速度测量的性能表征[J]. 实验流体力学, 2019, 33(2): 72-78. doi: 10.11729/syltlx20180180
引用本文: 谷丰, 彭迪, 温新, 等. 多孔压敏荧光粒子的制备与流场压力/速度测量的性能表征[J]. 实验流体力学, 2019, 33(2): 72-78. doi: 10.11729/syltlx20180180
Gu Feng, Peng Di, Wen Xin, et al. Fabrication and characterization of mesoporous pressure-sensitive luminescent particles for in-flow measurement of pressure and velocity[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 72-78. doi: 10.11729/syltlx20180180
Citation: Gu Feng, Peng Di, Wen Xin, et al. Fabrication and characterization of mesoporous pressure-sensitive luminescent particles for in-flow measurement of pressure and velocity[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 72-78. doi: 10.11729/syltlx20180180

多孔压敏荧光粒子的制备与流场压力/速度测量的性能表征

doi: 10.11729/syltlx20180180
基金项目: 

国家自然科学基金项目 11502144

详细信息
    作者简介:

    谷丰(1995-), 男, 河南濮阳人, 硕士研究生。研究方向:压敏涂层开发。通信地址:上海交通大学机械与动力工程学院(200240)。E-mail:707996506@sjtu.edu.cn

    通讯作者:

    彭迪, E-mail:idgnep8651@sjtu.edu.cn

  • 中图分类号: V211.71

Fabrication and characterization of mesoporous pressure-sensitive luminescent particles for in-flow measurement of pressure and velocity

  • 摘要: 开发了一类微米级压敏荧光粒子。该粒子由表面多孔的空心二氧化硅(SiO2)粒子与压敏荧光材料(PtTFPP和Ru(dpp))融合而成。通过浸染方法使压敏荧光分子附着于粒子上,形成多功能示踪粒子,从而将粒子图像速度场测量技术(Particle Image Velocimetry,PIV)与压敏漆(Pressure Sensitive Paint,PSP)技术相结合,发展了一种流场压力与速度同步测量的技术,为流体力学研究提供一种崭新的实验测量手段。利用PSP静态与动态标定系统,对压敏粒子的信号强度、压力敏感性与压力响应时间进行了测量,研究了不同粒径和不同材料对压敏粒子性能的影响。测量结果表明,制备的压敏粒子具有较好的压力敏感性,其压力响应时间区间为40~70μm,符合测量流场瞬态压力的需求。分析了粒子在流场中的跟随性能,其中2μm粒子松弛时间为7.5μs,有较好的跟随性能。
  • 图  1  双相机PSP-PIV测量系统

    Figure  1.  Double camera PSP-PIV measurement system

    图  2  双相机系统采集过程

    Figure  2.  Acquisition process of dual camera system

    图  3  (a) B-25C粒子SEM照片; (b)粒子表面多孔结构

    Figure  3.  (a) SEM photo of B-25C particle; (b) particle surface porous structure

    图  4  压敏荧光粒子制备过程

    Figure  4.  Preparation of pressure sensitive fluorescence particles

    图  5  (a) 显微镜下样品表面; (b)石英玻璃上的Pt10μm样品

    Figure  5.  (a) sample surface under microscope; (b) Pt10μm sample on quartz glass

    图  6  动态标定系统

    Figure  6.  Experiment setup of dynamic calibration

    图  7  (a) 压敏粒子的压力标定曲线; (b)相同参考条件下的光强标定曲线

    Figure  7.  calibration curves of pressure sensitive particles; (b) calibration curves of the light intensity under the same reference condition

    图  8  压敏粒子的寿命标定曲线

    Figure  8.  Lifetime calibration curves of pressure sensitive particles

    图  9  Pt10μm压敏粒子动态标定示意图

    Figure  9.  Dynamic calibration diagram of Pt10μm pressure sensitive particles

    表  1  多孔粒子性能参数

    Table  1.   Performance parameters of porous particles

    粒子型号 平均粒径/μm 比表面积/(m2·g-1)
    B-6C 2.0~2.5 200~300
    B-25C 8.0~10.0 400~550
    下载: 导出CSV

    表  2  压敏荧光材料性能参数[16]

    Table  2.   Performance parameters of pressure sensitive fluorescent materials[16]

    压敏材料 激发光波长/nm 发射光波长/nm 温度系数(%/℃)
    PtTFPP 390 650 -1.0~-4.5
    Ru(dpp) 357, 457 600 --
    下载: 导出CSV

    表  3  压敏粒子性能参数

    Table  3.   Performance parameters of pressure sensitive particles

    Pt2μm Pt10μm Ru2μm Ru10μm
    压力敏感系数
    /(%·kPa-1)
    0.8202 0.6478 0.3357 0.3662
    光强参考值 1.000 4.274 2.159 4.685
    荧光寿命/μs 3.58 4.84 3.62 3.90
    下载: 导出CSV

    表  4  压敏粒子响应时间

    Table  4.   Response time of pressure sensitive particles

    压敏粒子型号 1/μs 2/μs 3/μs 平均响应时间/μs
    Pt10μm 75 78 76 76.3
    Pt2μm 39 40 60 46.3
    Ru10μm 71 74 93 79.3
    Ru2μm 58 47 54 53.0
    下载: 导出CSV
  • [1] Tavoularis S. Measurement in fluid mechanics[M]. Cambridge:Cambridge University Press, 2009.
    [2] Gregory J W, Sakaue H, Liu T, et al. Fast pressure-sensitive paint for flow and acoustic diagnostics[J]. Annual Review of Fluid Mechanics, 2014, 46(1):303-330. doi: 10.1146/annurev-fluid-010313-141304
    [3] 高丽敏, 吴亚楠, 胡小全, 等.基于光强的快速响应PSP动态测量技术及其应用[J].航空学报, 2014, 35(3):607-623. http://d.old.wanfangdata.com.cn/Periodical/hkxb201403002

    Gao L M, Wu Y N, Hu X Q, et al. Intensity-based fast response PSP technique and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):607-623. http://d.old.wanfangdata.com.cn/Periodical/hkxb201403002
    [4] Taylor Z J, Gurka R, Kopp G A, et al. Simultaneous PIV/pressure measurements of the flow around elongated bluff bodies[C]. The 7th International Colloquium on Bluff Body Aerodynamics and Applications. Shanghai, China, 2012.
    [5] Koike S, Oosawa J, Nakakita K, et al. Simultaneous pressure and velocity field measurement of pseudo-shock-wave using PSP and PIV[C]//Proc of the AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition. 2013.
    [6] 王勇, 陈鹏, 耿子海, 等.基于PIV速度场测量重构压强场的研究进展[J].实验流体力学, 2014, 28(4):1-8. http://www.syltlx.com/CN/abstract/abstract10745.shtml

    Wang Y, Chen P, Geng Z H, et al. Bevelopment of PIV-based instantaneous pressure determination[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(4):1-8. http://www.syltlx.com/CN/abstract/abstract10745.shtml
    [7] Oudheusden B W V. Principles and application of velocimetry-based planar pressure imaging in compressible flows with shocks[J]. Experiments in Fluids, 2008, 45(4):657-674. doi: 10.1007/s00348-008-0546-9
    [8] Charonko J J, King C V, Smith B L, et al. Assessment of pressure field calculations from particle image velocimetry measurements[J]. Measurement Science & Technology, 2010, 21(10):105401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ebf2b83fcfeccce88a3a163f62e9cbe4
    [9] Someya S, Yoshida S, Li Y, et al. Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles[J]. Measurement Science & Technology, 2009, 20(2):28-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b5447e29be6b4d039d535c117bb904f3
    [10] Someya S, Li Y, Ishii K, et al. Combined two-dimensional velocity and temperature measurements of natural convection using a high-speed camera and temperature-sensitive particles[J]. Experiments in Fluids, 2011, 50(1):65-73. doi: 10.1007/s00348-010-0894-0
    [11] Kimura F, Mccann J, Khalil G E, et al. Simultaneous velocity and pressure measurements using luminescent microspheres[J]. Review of Scientific Instruments, 2010, 81(6):697-45. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0215895930/
    [12] Asif M, Li S, Ali Z, et al. Ultrafast sodium/potassium ion intercalation into hierarchically porous thin carbon shells[J]. Advanced Materials, 2018, 95:1805430.
    [13] Liang J, Liang Z B, Zou R Q, et al. Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks[J]. Advanced Materials, 2017, 29:1701139. doi: 10.1002/adma.201701139
    [14] Snyder J, Fujita T, Chen M W, et al. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts[J]. Nature Materials, 2010, 9(11):904-907. doi: 10.1038/nmat2878
    [15] Erlebacher J, Mccue I. Geometric characterization of nanoporous metals[J]. Acta Materialia, 2012, 60(17):6164-6174. doi: 10.1016/j.actamat.2012.07.059
    [16] 刘天舒, Sullivan J P.压力敏感涂料与温度敏感涂料[M].北京:国防工业出版社, 2012.

    Liu T S, Sullivan J P. Pressure and temperature sensitive paints[M]. Beijing:National Defence Industry Press, 2012.
    [17] Juliano T J, Kumar P, Peng D, et al. Single-shot, lifetime-based pressure-sensitive paint for rotating blades[J]. Measurement Science & Technology, 2011, 22(8):085403. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=19765e28b7b6516880ab042382c3b2c6
    [18] Abe S, Okamoto K, Madarame H. The development of PIV PSP hybrid system using pressure sensitive particles[J]. Measurement Science & Technology, 2004, 9(15):1153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ae0e9cb383bebf7d7149ac738ad118b
    [19] 王彦植, 陈方, 刘洪, 等.高速流动PIV示踪粒子跟随响应特性实验研究[J].实验流体力学, 2018, 32(3):94-99. http://www.syltlx.com/CN/abstract/abstract11112.shtml

    Wang Y Z, Chen F, Liu H, et al. Experimental investigation on response characteristics of PIV tracer particles in high speed flow[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3):94-99. http://www.syltlx.com/CN/abstract/abstract11112.shtml
    [20] 刘剑, 李雪冰, 白崇国, 等.管道风流PIV实验中示踪粒子特性[J].辽宁工程技术大学学报, 2016, 35(10):1057-1062. doi: 10.11956/j.issn.1008-0562.2016.10.010

    Liu J, Li X B, Bai C G. Characteristics of tracer particles in PIV experiments of pipeline air flow[J]. Journal of Liaoning Technical University, 2016, 35(10):1057-1062. doi: 10.11956/j.issn.1008-0562.2016.10.010
    [21] 李国帅, 周强, 刘祥, 等.压力敏感涂料特性及其校准技术实验研究[J].航空学报, 2013, 34(2):227-234. http://d.old.wanfangdata.com.cn/Periodical/hkxb201302004

    Li G S, Zhou Q, Liu X, et al. Experimental research of pressure sensitive paint performance and calibration technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):227-234. http://d.old.wanfangdata.com.cn/Periodical/hkxb201302004
    [22] Kimura F, Rodriguez M, Mccann J, et al. Development and characterization of fast responding pressure sensitive microspheres[J]. Review of Scientific Instruments, 2008, 79(7):3340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af599e775c52e3efdc8d225754862131
    [23] 薛莉.双膜激波管技术在动压校准中的研究[D].太原: 中北大学, 2014.

    Xue L. The research of double diaphragm shock tube in dynamic pressure calibration[D]. Taiyuan: North University of China, 2014.
    [24] 刘洪, 陈方, 励孝杰, 等.高速复杂流动PIV技术研究实践与挑战[J].实验流体力学, 2016, 30(1):28-42. http://www.syltlx.com/CN/abstract/abstract10899.shtml

    Liu H, Chen F, Li X J, et al. Practices and challenges on PIV technology in high speed complex flows[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1):28-42. http://www.syltlx.com/CN/abstract/abstract10899.shtml
    [25] Melling A. Tracer particles and seeding forparticle image velocimetry[J]. Measurement Science & Technology, 1997, 8(12):1406-1406. http://www.ingentaconnect.com/content/iop/mst/1997/00000008/00000012/art00005
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  107
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-16
  • 修回日期:  2019-01-20
  • 刊出日期:  2019-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日