留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由活塞高焓脉冲风洞发展历程及试验能力综述

陈星 谌君谋 毕志献 马汉东

陈星, 谌君谋, 毕志献, 等. 自由活塞高焓脉冲风洞发展历程及试验能力综述[J]. 实验流体力学, 2019, 33(4): 65-80. doi: 10.11729/syltlx20180169
引用本文: 陈星, 谌君谋, 毕志献, 等. 自由活塞高焓脉冲风洞发展历程及试验能力综述[J]. 实验流体力学, 2019, 33(4): 65-80. doi: 10.11729/syltlx20180169
Chen Xing, Shen Junmou, Bi Zhixian, et al. Review on the development of the free-piston high enthalpy impulse wind tunnel and its testing capacities[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 65-80. doi: 10.11729/syltlx20180169
Citation: Chen Xing, Shen Junmou, Bi Zhixian, et al. Review on the development of the free-piston high enthalpy impulse wind tunnel and its testing capacities[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 65-80. doi: 10.11729/syltlx20180169

自由活塞高焓脉冲风洞发展历程及试验能力综述

doi: 10.11729/syltlx20180169
基金项目: 

国家自然科学基金项目 11872349

详细信息
    作者简介:

    陈星(1979-), 男, 河南博爱人, 研究员。研究方向:实验空气动力学。通信地址:北京市7201信箱14分箱(100074)。E-mail:chenxing0234@sina.com

    通讯作者:

    谌君谋, E-mail: shenjunmou@163.com

  • 中图分类号: V211.7

Review on the development of the free-piston high enthalpy impulse wind tunnel and its testing capacities

  • 摘要: 自由活塞高焓脉冲风洞是研究高温气体效应主要的地面模拟设备之一,具备模拟超高速流动的能力,主要分为自由活塞驱动的高焓激波风洞和高焓膨胀管风洞。经过数十年的发展,自由活塞高焓脉冲风洞不仅能够用于研究飞行器在超高速自由来流条件下的复杂气动热力学和气动光学等问题,还能开展自由飞、超燃冲压发动机和电磁辐射等技术的研究。综述其发展历程,重点介绍理论基础研究阶段、早期探索阶段和实用化发展阶段等3个阶段的研究历程和主要结论,以期为大型自由活塞高焓脉冲风洞及其试验能力的发展和应用提供借鉴和参考。
  • 图  1  自由活塞激波管[29]

    Figure  1.  Free piston shock tube[29]

    图  2  自由活塞膨胀管示意图[4, 39]

    Figure  2.  The Schematic of free piston expansion tube[4, 39]

    图  3  反射激波-接触间断面缝合示意图[40]

    Figure  3.  The schematic of reflected shock wave-contact surface interaction[40]

    图  4  激波管的边界层示意图[46]

    Figure  4.  The schematic of boundary layer in shock tube[46]

    图  5  T2自由活塞激波风洞[47]

    Figure  5.  T2 free piston shock tunnel[47]

    图  6  T3自由活塞激波风洞[47]

    Figure  6.  T3 free piston shock tunnel[47]

    图  7  FD-21自由活塞激波风洞[22]

    Figure  7.  FD-21 free-piston shock tunnel[22]

    图  8  反射激波与激波管边界层相互作用阴影图[88]

    Figure  8.  Shadowgraph of the interaction of the reflected shock with the shock tube wall boundary layer[88]

    图  9  驱动气体抽吸装置示意图[89]

    Figure  9.  Schematic of a device for capturing driver gas[89]

    图  10  结合试验和数值计算的自由来流参数调试流程[10, 91]

    Figure  10.  Combined experimental and numerical iterative procedure to determine free stream conditions[10, 91]

    图  11  辐射加热测量的试验模型[4]

    Figure  11.  The test model for radiation heating measurement[4]

    图  12  HEG风洞尖锥和HB-2模型[99]

    Figure  12.  Cone and HB-2 models installed in the HEG test section[99]

    图  13  HyShot-Ⅳ模型

    Figure  13.  HyShot-Ⅳ model

    图  14  燃烧火焰[103]

    Figure  14.  Combustion flame[103]

    图  15  半锥角7°尖锥模型[104]

    Figure  15.  7-degree half cone angle model[104]

    图  16  模型下落过程[105]

    Figure  16.  Sequential images of model dropping[105]

    图  17  THAAD气动光学试验[106]

    Figure  17.  Aero-optic experiment of THAAD in shock tunnel[106]

    图  18  利用光学仪器探测Hayabusa模型流场示意图[107]

    Figure  18.  Illustration of the configuration of optical instruments used to probe the Hayabusa flow field[107]

    图  19  利用PLIF方法进行超燃流场诊断[112]

    Figure  19.  Hypersonic combustion diagnose using PLIF method[112]

    图  20  TDLAS在T-ADFA风洞测试示意图[113]

    Figure  20.  Schematic of the TDLAS in the T-ADFA facility[113]

    图  21  利用CARS测量瞬态流动的温度场[114]

    Figure  21.  The optical arrange for CARS[114]

    表  1  自由活塞激波管/风洞参数

    Table  1.   The parameters of the free piston shock tube/tunnel

    设备代号 T1 T2 T3 DDT
    压缩管 长度/m 1.5 3.0 6.0 5.0
    内径/m 0.051 0.076 0.300 0.124
    激波管 长度/m 1.35 2.00 6.00 4.50
    内径/m 0.012 0.021 0.076 0.050
    活塞 质量/kg 0.8 1.2 90.0 5.5
    δ/(kg·m-2) 390 270 1270 456
    下载: 导出CSV

    表  2  自由活塞激波风洞参数

    Table  2.   The parameters of the free piston shock tunnel

    设备代号 T4 RHYFL T5 TCM2 HEG FPST FD-18 HEK HIEST T-ADFA HELM T6 FD-21 X3R
    压缩管 长度/m 25.0 47.0 30.0 7.0 33.0 27.5 26.6 16.0 42.0 5.0 21.0 9.5 75.0 14.0
    内径/m 0.228 0.600 0.300 0.020 0.550 0.200 0.130 0.210 0.600 0.050 0.286 0.300 0.668 0.500
    激波管 长度/m 10.00 31.00 12.00 6.70 17.00 10.70 10.55 7.00 17.00 8.65 11.00 8.65 35.00 22.00
    内径/m 0.075 0.200 0.090 0.070 0.150 0.076 0.050 0.072 0.180 0.025 0.095 0.096 0.290 0.200
    活塞 质量/kg 90 1750 150 35 ~730 ~180 34 33 ~720 8 53 90 ~400 100
    δ/(kg·m-2) 2210 6190 2120 1115 3720 5732 2562 1168 2548 4076 825 1273 1168 509
    喷管驻室总焓/(MJ·kg-1) ~15 - ~20 ~20 ~25 20 ~25 6.13 ~25 -24 ~25 20 20 -
    喷管驻室总压/MPa ~90 - ~100 ~132 ~200 70 145 16 ~150 21 ~100 100 50 -
    喷管出口直径/m 0.388 0.618 0.314 0.400 0.880 0.457 0.242 0.400 1.200 0.300 0.685 0.270 1.800/2.000 0.750
    时间 1987 1980’s 1990 1991 1991 1993 1994 1995 1998 2000’s 2008 2016 2016 2017
    国家 澳大利亚 美国 美国 法国 德国 美国 中国 日本 日本 澳大利亚 德国 英国 中国 澳大利亚
    下载: 导出CSV

    表  3  自由活塞膨胀管/风洞参数

    Table  3.   The parameters of the free piston expansion tube/tunnel

    设备代号 TQ/X1 GASL X2 JX-1 X3 HEK-X T6 FD-21
    压缩管 长度/m 2.3 12.3 4.5 3.0 19.0 16.0 9.5 75.0
    内径/m 0.100 0.450 0.257 0.150 0.500 0.210 0.300 0.668
    激波管 长度/m 2.080 15.900 3.424 15.000 10.000 6.500 8.650 35.000
    内径/m 0.037 0.150 0.085 0.050 0.200 0.072 0.096 0.290
    加速管 长度/m 3.360 31.800 5.156 3.500 28.000 9.500 7.000 32.000
    内径/m 0.037 0.150 0.085 0.050 0.180 0.072 0.096 0.290
    活塞 质量/kg 25.0 250.0 35.0 7.0 103.0 15.7 90.0 ~400.0
    δ/(kg·m-2) 3184 1570 675 3900 525 4076 1273 1168
    时间 1987 1989 1995 1999 2001 2016 调试中 调试中
    国家 澳大利亚 美国 澳大利亚 日本 澳大利亚 日本 英国 中国
    下载: 导出CSV
  • [1] 姜宗林, 俞鸿儒.高超声速气动热力学重要基础问题研究进展[J].气体物理, 2011, 6(4):12-17.

    Jiang Z L, Yu H R. Research progresses on fundamental issues of hypersonic aerothermodynamics[J]. Physics of Gases, 2011, 6(4):12-17.
    [2] Anderson J D. Hypersonic and high temperature gas dynamics[M]. Virginia:American Institute of Aeronautics and Astronautics, 2000.
    [3] Lu F K, Marren D E. Advanced hypersonic test facilities[M]. Virginia:American Institute of Aeronautics and Astronautics, 2002.
    [4] Igra O, Seiler F. Experimental methods of shock wave research[M]. Switzerland:Springer International Publishing, 2016.
    [5] Smelt R. Review of aeronautical wind tunnel facilities[M]. Washington D C:The National Academy Press, 1988.
    [6] 陈强.激波管流动的理论和实验技术[M].合肥:中国科技大学, 1979.

    Chen Q. The theory and experimental technology of shock tube flow[M]. Hefei:University of Science and Technology of China, 1979.
    [7] Bushnell D M. Scaling:wind tunnel to flight[J]. Annual Reviews of Fluid Mechanics, 2006, 38:111-128. doi: 10.1146/annurev.fluid.38.050304.092208
    [8] Stalker R J. Hypervelocity aerodynamics with chemical nonequilibrium[J]. Annual Reviews of Fluid Mechanics, 1989, 21(1):37-60.
    [9] Fomin N A. 110 years of experiments on shock tubes[J]. Journal of Engineering Physics and Thermophysics, 2010, 83(6):1118-1135. doi: 10.1007/s10891-010-0437-9
    [10] 谌君谋, 陈星, 毕志献, 等.高焓激波风洞试验技术综述[J].空气动力学学报, 2018, 36(4):543-554. doi: 10.7638/kqdlxxb-2017.0165

    Shen J M, Chen X, Bi Z X, et al. Review on experimental technology of high enthalpy shock tunnel[J]. Acta Aerodyna-mica Sinica, 2018, 36(4):543-554. doi: 10.7638/kqdlxxb-2017.0165
    [11] Gai S L. Free piston shock tunnels:developments and capabilities[J]. Progress in Aerospace Sciences, 1992, 29(1):1-41. https://www.sciencedirect.com/science/article/pii/037604219290002Y
    [12] Jiang Z L, Zhao W, Yu H R. Study on high performance International techniques for high-enthalpy shock tunnels[C]//Proc of the 23rd International Symposium on Shock Waves. 2001.
    [13] Stollery J L, Stalker R J. The development and use of free piston wind tunnels[C]//Proc of the 14th International Sympo-sium on Shock Tubes and Waves. 1983.
    [14] Stalker R J, Besant R W. A method for production of strong shocks in a gas driven shock tube[R]. National Research Council Report GD-81, 1959.
    [15] Stalker R J, Morgan R G. The university of Queensland free piston shock tunnel T-4: Initial operation and preliminary calibration[C]//Proc of the 4th National Space Engineering Symposium. 1988.
    [16] Morgan R G. A review of the use of expansion tubes for creating superorbital flows[R]. AIAA-97-0279, 1997.
    [17] Hornung H. Experimental hypervelocity flow simulation, needs, achievements and limitations[C]//Proc of the 1st Pacific International Conference on Aerospace Science and Technology. 1993.
    [18] McGilvray M, Doherty L J, Morgan R G, et al. T6: the oxford university stalker tunnel[R]. AIAA-2015-3545, 2015.
    [19] Burstchell Y, Brun R, Zeitoun D. Two dimensional numerical simulation of the Marseille University free piston shock tunnel-TCM2[C]//Proc of the 18th International Symposium on Shock Waves. 1991.
    [20] Hannemann K. High enthalpy flows in the HEG shock tunnel: experiment and numerical rebuilding[R]. AIAA-2003-978, 2003.
    [21] Itoh K, Takahashi M, Komuro T. Effect of throat melting on nozzle flow characteristic in high enthalpy shock tunnel[C]//Proc of the 22nd International Symposium on Shock Waves. 1999.
    [22] Shen J M, Ma H D, Li C. Initial Measurements of a 2m Mach-10 free-piston shock tunnel at CAAA[C]//Proc of the 31st International Symposium on shock Waves. 2017.
    [23] Bi Z X, Zhang B B, Zhu H, et al. Experiments and computations on the compression process in the free piston shock tunnel FD21[C]//Proc of the 5th International Conference on Experimental Fluid Mechanics. 2018.
    [24] Hertzberg A. A shock tube method of generating hypersonic flows[J]. Journal of the Aeronautical Science, 1951, 18(12):803-804. doi: 10.2514/8.2124
    [25] Stollery J L. Real gas effects on shock-tube performance at high shock strengths[R]. ARC TR CP-403, 1958.
    [26] Glick H S, Wurster W H. Shock tube study of dissociation relaxation in oxygen[J]. The Journal of Chemical Physics, 1957, 27(5):1224-1226. doi: 10.1063/1.1743976
    [27] Alpher R A, White D R. Flow in shock tubes with area change at the diaphragm section[J]. Journal of Fluid Mechanics, 1958, 3(5):457-470. doi: 10.1017/S0022112058000124
    [28] Longwell P A, Reamer H H, Wilburn N P, et al. Ballistic piston for investigating gas phase reactions[J]. Industrial and Engineering Chemistry, 1958, 50(4):603-610. doi: 10.1021/ie50580a027
    [29] Stalker R J. Recent developments with free piston drivers[C]//Proc of the 17th International Symposium on Shock Tubes and Waves. 1989.
    [30] Greif R. The free piston shock tube[D]. Cambridge: Harvard University, 1962.
    [31] Resler E L, Bloxsom D E. Very high number flows by unsteady flow principles[C]//Proc of Cornell University Graduate school of Aeronautical Engineering. 1952.
    [32] Bernstein H. A double-diaphragm shock tube to produce transient high Mach number flows[J]. Journal of the Aeronautical Science, 1953, 20(11):790-791. doi: 10.2514/8.2844
    [33] Hertzberg A, Smith W E, Glick H S, et al. Modifications of the shock tube for the generation of hypersonic flow[R]. AEDC TN-55-15, 1955.
    [34] Trimpi R L. A preliminary theoretical study of the expansion tube, a new device for producing high enthalpy short duration hypersonic gas flows[R]. NASA TR R-133, 1962.
    [35] Trimpi R L, Callis L B. A perfect-gas analysis of the expansion tunnel, a modification to the expansion tube[R]. NASA TR R-233, 1965.
    [36] Callis L B. A theoretical study of the effect on expansion tube performance of earo changes at primary and secondary diaphragm station[R]. NASA TN D-3303, 1966.
    [37] Norfleet G D, Lacey J J, Whitfield J D. Results of an experimental investigation of the performance of an expansion tube[C]//Proc of the 4th Hypervelocity Techniques Sympo-sium. 1965.
    [38] Norfleet G D, Loper F C. A theoretical real-gas analysis of the expansion tunnel[R]. Arnold Engineering Development Center TR-66-71, 1966.
    [39] Morgan R G, Stalker R J. Double diaphragm driven free piston expansion tube[C]//Proc of the 18th International Symposium on Shock Tubes and Waves. 1991.
    [40] Wittliff C E, Wilson M R, Hertzberg A. The tailored interface hypersonic shock tunnel[J]. Journal of the Aerospace Sciences, 1958, 26(1):219-228.
    [41] Trass O, Mackey D. Contact surface tailoring in a chemical shock tube[J]. AIAA Journal, 1963, 1(9):2161-2163. doi: 10.2514/3.2019
    [42] Flagg R F. Detailed analysis of shock tube tailored condition[R]. RAD-TM-63-64, 1963.
    [43] Reddy N M. Shock tube flow analysis with a dimensionless velocity number[R]. NASA-TN-D-5518, 1969.
    [44] Hansen C F. Approximations for the thermodynamic and transport properties of high temperature air[R]. NASA-TR-R-50, 1959.
    [45] Loubsky W J, Reller J O Jr. Analysis of tailored-interface operation of shock tubes with helium-driven planetary gases[R]. NASA-TN-D-3495, 1966.
    [46] Mirels H. Shock tube test time limitation due to turbulent wall boundary layer[J]. AIAA Journal, 1964, 2(1):84-93. doi: 10.2514/3.2218
    [47] Stalker C, Morgan R, Tanner R T. Raymond Johnstalker 1930-2014[J]. Historical Records of Australian Science, 2016, 27(1):70-80. doi: 10.1071/HR15012
    [48] Stalker R J. The free-piston shock tube[J]. Aeronautical Quarterly, 1966, 17(4):351-370. doi: 10.1017/S0001925900003966
    [49] McIntosh M K. Free stream velocity measurements in a high enthalpy shock tunnel[J]. Physics of Fluids, 1971, 14(6):1100-1102. doi: 10.1063/1.1693570
    [50] Crane K C, Stalker R J. Mass-spectrometric analysis of hypersonic flows[J]. Journal of Physics D:Applied Physics, 1977, 10(5):679-695. doi: 10.1088/0022-3727/10/5/010
    [51] Hornung H G. Non-equilibrium ideal-gas dissociation after a curved shock wave[J]. Journal of Fluid Mechanics, 1976, 74(1):143-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112076001730
    [52] Hornung H G, Smith G H. The influence of relaxation on shock detachment[J]. Journal of Fluid Mechanics, 1979, 93(2):225-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112079001865
    [53] East R A, Stalker R J. Measurements of heat transfer to a flat plate in a dissociated high-enthalpy laminar air flow[J]. Journal of Fluid Mechanics, 1980, 97(4):673-699. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112080002753
    [54] Ebrahim N A, Sandeman R J. Interferometric studies of carbon dioxide dissociation in free-piston shock tube[J]. Journal of Chemical Physics, 1976, 65(1):3446-3453.
    [55] Smart M, Stalker R J, Morgan R, et al. Hypersonic research in Australia[R]. RTO-EN-AVT-150-11, 2008.
    [56] Jones J J. Some performance characteristics of the LRC 3.75-inch pilot expansion tube using an unheated hydrogen driver[C]//Proc of the 4th Hypervelocity Techniques Symposium. 1965.
    [57] Moore J A. Description and initial operating performance of the Langley 6 inch expansion tube using heated Helium driver gas[R]. NASA-TM-X-3240, 1975.
    [58] Miller C G. Flow properties in expansion tube with Helium, Argon, Air and CO2[J]. AIAA Journal, 1974, 12(4):564-566. doi: 10.2514/3.49290
    [59] Miller C G, Jones J J. Development and performance of the NASA Langley Research Center expansion tube/tunnel, a hypersonic-hypervelocity real gas facility[C]//Proc of the 14th International Symposium on Shock Tubes and Waves. 1983.
    [60] Stewart B, Morgan R G, Jacobs P, et al. The RHYFL facility as a high performance expansion tube for scramjet testing[R]. AIAA-2000-2595, 2000.
    [61] Blanks J R. Initial calibration of the AEDC impulse tunnel[R]. AEDC-TR-95-36, 1996.
    [62] 苟光贤, 黄洁.高焓真实气体效应试验技术研究[C]//第九届高超声速气动力(热)学术交流会议论文集. 1997.
    [63] 苟光贤.气动中心超高速所自由活塞激波风洞技术研究进展[C]//第二届全国航空航天空气动力学前沿问题学术研讨会, 1996.

    Gou G X. The progress of the free piston shock tunnel at the CARDC hypervelocity research institute[C]//Proc of the 2nd National Symposium on the Frontiers of Aerospace Aerodyna-mics. 1996.
    [64] Schemperg K, Mundt C. Study of numerical simulations for optimized operation of the free piston shock tunnel HELM[R]. AIAA-2008-2653, 2008.
    [65] McGilvray M, Doherty L J, Morgan R G, et al. T6: The Oxford University stalker tunnel[R]. AIAA-2015-3545, 2015.
    [66] Oxford Thermofluids Institute. T6 Stalker Tunnel[EB/OL].[2019-04-09]. http://Oti.eng.ox.ac.uk/facilities/t6-stalker-tunnel.
    [67] Stennett S J, Gildfind D E, Jacobs P A. Optimising the X3R reflected shock tunnel free-piston driver for long duration test times[C]//Proc of the 31st International Symposium on Shock Waves. 2017.
    [68] Morgan R G, Stalker R J. Double diaphragm driven free piston expansion tube[C]//Proc of the 18th International Symposium on Shock Waves. 1991.
    [69] Erdos J, Calleja J, Tamagno J. Increase in the hypervelocity test envelope of the HYPULSE shock-expansion tube[R]. AIAA-94-2524, 1994.
    [70] Morgan R G. Superorbital expansion tubes[C]//Proc of the 21st International Symposium on Shock Waves. 1997.
    [71] Abdel-Jawad M, Mee D J, Morgan R G, et al. Transient force measurements at superorbital speeds[C]//Proc of the 23rd International Symposium on Shock Waves. 2001.
    [72] Sasoh A, Ohnishi Y, Koremoto K. Operation design and performance of a free-piston-driven expansion tube[R]. AIAA-99-0825, 1999.
    [73] Tannoy H, Komuro T, Sato K, et al. Basic characteristics of the free-piston driven expansion tube JAXA HEK-1[R]. AIAA-2016-3817, 2016.
    [74] Leyva I A. Study of the addition of a divergent nozzle to an expansion tube for increasing test time[R]. AIAA-1994-2533, 1994.
    [75] Bakos R J, Calleja J F, Erdos J I, et al. Design, calibration and analysis of a tunnel mode of operation for the HYPULSE facility[R]. AIAA-1996-2194, 1996.
    [76] Sudnitsin O. Design and testing of expansion tube with area change[D]. Queensland: the University of Queensland, 2000.
    [77] Chue R S M, Bakos R J, Tsai C Y, et al. The design of an expansion tunnel nozzle in HYPULSE[C]//Proc of the 23rd International Symposium on Shock Waves. 2001.
    [78] Holden M S, Wadhams T P, Candler G V. Experimental studies in the LENS shock tunnel and expansion tunnel to examine real-gas effects in hypervelocity flows[R]. AIAA-2004-916, 2004.
    [79] MecLean M, Dufrene A, Wadhams T, et al. Numerical and experimental characterization of high enthalpy flow in an expansion tunnel flow[R]. AIAA-2010-1562, 2010.
    [80] Hornung H G. The piston motion in a free-piston driver for shock tubes and tunnels[R]. GALCIT FM-88-1, 1988.
    [81] Beck W H, Eiteberg G, Mclntyre T J, et al. The high enthalpy shock tunnel in Göttingen (HEG)[J]. Shock Waves, 1992, 2(1):677-682.
    [82] Labracherie L, Dumitrescu M P, Burtschell Y, et al. On the compression process in a free-piston shock-tunnel[J]. Shock Waves, 1993, 3(1):19-23. doi: 10.1007/BF01414744
    [83] 徐立功, 王刚.重活塞压缩器性能参数的数值解法[J].中国科学技术大学学报, 1994, 24(3):277-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400622405

    Xu L G, Wang G. Numerical method of calculation performance parameters of a heavy piston compressor[J]. Journal of China University of Science and Technology, 1994, 24(3):277-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400622405
    [84] Itoh K, Ueda S, Komuro T, et al. Improvement of a free piston driver for a high-enthalpy shock tunnel[J]. Shock Waves, 1998, 8(4):215-233. doi: 10.1007/s001930050115
    [85] 朱浩, 沈清, 宫建.自由活塞激波风洞定压驱动时间研究[J].空气动力学学报, 2014, 32(1):45-50. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201401007

    Zhu H, Shen Q, Gong J. The constant pressure time of piston driver in free piston shock tunnel[J]. Acta Aerodynamica Sinica, 2014, 32(1):45-50. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201401007
    [86] Andrianatoa A, Gildfind D, Morgan R. Preliminary develop-ment of high enthalpy conditions for the X3 expansion tube[C]//Proc of the 20th Australasian Fluid Mechanics Conference. 2016.
    [87] Andrianatos A, Gildfind D, Morgan R G. Driver condition development for high-enthalpy operation of the X3 expansion tube[C]//Proc of the 31st International Symposium on Shock Waves. 2017.
    [88] Mark H. The interaction of a reflected shock wave with the boundary layer in a shock tube[R]. NACA-TM-1418, 1958.
    [89] Sudani N, Valiferdowsi B, Hornung H G. Test time increase by delaying driver gas contamination for reflected shock tunnels[J]. AIAA Journal, 2000, 38(9):1497-1503. doi: 10.2514/2.1138
    [90] Hannemann K, Schnieder M, Reimann B, et al. The influence and the delay of driver gas contamination in HEG[R]. AIAA-2000-2593, 2000.
    [91] Hannemann K, Schramm J M. A closely coupled experimental and numerical approach for hypersonic and high enthalpy flow investigations utilizing the HEGshock tunnel and the DLR TAU code-part 2[R]. RTO-EN-AVT-186, 2010.
    [92] Tsai C Y, Bakos R J. Mach 7-21 flight simulation in the HYPLUSE shock tunnel[C]//Proc of the 23rd International Symposium on Shock Waves. 2002.
    [93] Doherty L J. An experimental investigation of an airframe integrated 3-D scramjet engine at a Mach 10 flight condition[D]. Queensland: The University of Queensland, 2014.
    [94] Nagayama T, Nagai H, Tanno H, et al. Global heat flux measurement using temperature-sensitive paint in high-enthalpy shock tunnel HIEST[R]. AIAA-2017-1682, 2017.
    [95] Han S G, Jia G S, Bi Z X, et al. Heat-flux measurement of flat delta olate using phosphor thermography technique in Gun tunnel[C]//Proc of the 31st International Symposium on Shock Waves. 2017.
    [96] 于靖波, 向星居, 熊红亮, 等.快速响应压敏涂料测试技术与应用[J].实验流体力学, 2018, 32(3):17-32. http://www.syltlx.com/CN/abstract/abstract11102.shtml

    YU J B, Xiang X J, Xiong H L, et al. Measurements and applications of fast response pressure sensitive paint[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3):17-32. http://www.syltlx.com/CN/abstract/abstract11102.shtml
    [97] Tanno H, Komuro T, Ohnishi N, et al. Experimental study on heat flux augmentation in high enthalpy shock tunnels[R]. AIAA-2014-2548, 2014.
    [98] Takahashi M, KomuroK, Itoh K H T, et al. Development of a new force measurement method for scramjet testing in a high enthalpy shock tunnel[R]. AIAA-1999-4961, 1999.
    [99] Roberson M, Hannemann K. Shortduration force measurement in impulse facilities[R]. AIAA-2006-3439, 2006.
    [100] Gardner A D, Hannemann K. Ground testing of the HyShot supersonic combustion flight experiment in HEG and compari-son with flight data[R]. AIAA-2004-3345, 2004.
    [101] Itoh K. Aerothermodynamic and scramjet tests in high enthalpy shock tunnel[R]. AIAA-2007-1041, 2007.
    [102] Schramm J, Sunami T, Itoh K. Experimental investigation of supersonic combustion in the HIEST and HEG free piston driven shock tunnels[R]. AIAA-2010-7122, 2010.
    [103] 中国科技网. "一秒跑三千米"我国10000公里/时超燃冲压发动机风洞试验获突破(2018-12-10)[2019-04-09]. http://www.stdaily.com/index/kejixinwen/2018-12/10/content_737584.shtml.
    [104] Tanno H, Komuro T, Sato K, et al. Measurement of hypersonic high-enthalpy boundary layer transition on a 7° cone model[R]. AIAA-2010-310, 2010.
    [105] Tanno H, Komuro T, Sato K, et al. Free-flight force measure-ment technique in shock tunnel[R]. AIAA-2012-1241, 2012.
    [106] Stallings D W, Williams W D. Free-piston shock tunnel test technique development: an AEDC/DLR cooperative program[R]. AEDC-TR-01-5, 2003.
    [107] Buttsworth D, D'Souza M, Potter D. Expansion tunnel radiation experiments to support Hayabusa re-entry observa-tions[R]. AIAA-2010-634, 2010.
    [108] Andrianatos A, Gildfind D, Morgan R. A study of radiation scaling of high enthalpy flows in expansion tubes[C]//Proc of the 7th Asia-Pacific International Symposium on Aerospace Technology. 2015.
    [109] Kychakoff G, Howe R D, Hanson R K, et al. Flow visualiza-tion in combustion gases using planar laser-induced fluorescence[R]. AIAA-1983-405, 1983.
    [110] Sappey A D, Sutherland L, Owenby D, et al. Flight-ready TDLAS combustion sensor for the HIFiRE 2 hypersonic research program[R]. AEDC-TR-10-T-6, 2009.
    [111] Grisch F, Bounchardy P, Péalat M. CARS studies in hypersonic flows[R]. AIAA-93-3047, 1993.
    [112] Ben-Yakar A, Hanson R K. Hypervelocity combustion studies using simulaneous OH-PLIF and schlieren imaging in an expansion tube[R]. AIAA-1999-2453, 1999.
    [113] Krishna Y, Sheele S L, O'Byrne S B. A time-resolved tempera-ture measurement system for free-piston shock tunnels[R]. AIAA-2015-2249, 2015.
    [114] Boyce R R, Pulford D R N, Housing A F P. Rotational and vibrational temperature measurements using CARS in a hypervelocity shock layer flow and comparisons with CFD calculations[J]. Shock Waves, 1996, 6:41-51. doi: 10.1007/BF02511403
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  694
  • HTML全文浏览量:  257
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-05
  • 修回日期:  2019-04-10
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日