留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滤波瑞利散射技术的带压燃烧场温度测量实验研究

闫博 李猛 陈力 陈爽 吴运刚 杨富荣 母金河

闫博, 李猛, 陈力, 等. 基于滤波瑞利散射技术的带压燃烧场温度测量实验研究[J]. 实验流体力学, 2019, 33(4): 27-32. doi: 10.11729/syltlx20180168
引用本文: 闫博, 李猛, 陈力, 等. 基于滤波瑞利散射技术的带压燃烧场温度测量实验研究[J]. 实验流体力学, 2019, 33(4): 27-32. doi: 10.11729/syltlx20180168
Yan Bo, Li Meng, Chen Li, et al. Experimental study on temperature measurement of high pressure combustion based on filtered Rayleigh scattering technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 27-32. doi: 10.11729/syltlx20180168
Citation: Yan Bo, Li Meng, Chen Li, et al. Experimental study on temperature measurement of high pressure combustion based on filtered Rayleigh scattering technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 27-32. doi: 10.11729/syltlx20180168

基于滤波瑞利散射技术的带压燃烧场温度测量实验研究

doi: 10.11729/syltlx20180168
基金项目: 

国家自然科学基金项目 91641118

中国空气动力研究与发展中心风雷青年创新基金资助项目 FLYIF20160017

中国空气动力研究与发展中心风雷青年创新基金资助项目 PJD20180131

详细信息
    作者简介:

    闫博(1990-), 男, 甘肃天水人, 工程师。研究方向:激光光谱诊断。通信地址:四川省绵阳市二环路南段6号64信箱(621000)。E-mail:372340756@qq.com

    通讯作者:

    陈爽, E-mail: chenshuang827@gmail.com

  • 中图分类号: V211.3

Experimental study on temperature measurement of high pressure combustion based on filtered Rayleigh scattering technology

  • 摘要: 为实现高压、受限空间条件下燃烧火焰二维温度场的测量,研究了基于碘分子超精细吸收凹陷的滤波瑞利散射技术。设计了一套滤波瑞利散射温度测量装置,主要由种子激光注入Nd:YAG激光器、碘分子滤波池、ICCD相机等组成。利用该测量装置,在高压火焰炉上开展了0.1~0.5MPa条件下的甲烷/空气预混火焰温度测量实验,结果表明:滤波瑞利散射测温技术能有效抑制米散射和背景杂散光的干扰,能在受限空间和带压条件下获得瞬态燃烧火焰温度场的分布,并且温度测量的相对不确定度优于15%;与热电偶温度测量实验的结果进行了对比,两者的偏差小于10%。因此,有望将滤波瑞利散射测温技术应用于发动机燃烧场温度诊断实验。
  • 图  1  碘分子对激光散射信号吸收示意图

    Figure  1.  Schematic of iodine transmission profile convoluted with the molecular Rayleigh scattering spectral profile

    图  2  分子滤波瑞利散射温度测量光路示意图

    Figure  2.  Schematic of optical arrangement for FRS temperature measurements

    图  3  (a) 高温高压火焰炉实物图;(b)McKenna火焰炉及其上方实验布局尺寸图

    Figure  3.  (a) Schematic of high temperature and pressure combustion burner; (b) The size of McKenna burner and the experiment layout

    图  4  瑞利散射光收集成像装置实物图

    Figure  4.  Schematic of Rayleigh scattering collecting and imaging system

    图  5  不同压强下FRS相对强度与温度的对应关系

    Figure  5.  Normalized FRS signal versus flow temperature curve under different pressures

    图  6  有/无滤波池条件的瑞利散射图像

    Figure  6.  Scattering images without and with the iodine filtering cell

    图  7  ICCD相机测得的瑞利散射信号强度S(20幅累加)与腔体压强p的关系

    Figure  7.  The relation between the Rayleigh scattering signal S and the chamber pressure p

    图  8  (a) 经滤波瑞利散射技术得到的火焰温度分布图像;(b)不同腔压下,火焰炉上方1.5cm处的火焰温度分布图; (c)不同探测位置处,热电偶和FRS (50幅平均)温度测量结果

    Figure  8.  (a) Images of combustion temperature distribution by the FRS technique; (b) Distribution of combustion temperature at the height (1.5cm) above the burner; (c) Comparison of the temperature results between the FRS technique and the thermocouple

    图  9  腔压p=0.50MPa时,不同时间下的火焰瑞利散射信号分布图像

    Figure  9.  Images of combustion Rayleigh scattering signal distribution with the chamber pressure p=0.50MPa, at different times

    表  1  带压燃烧实验参数(压强p,甲烷和空气流量QCH4QAir,当量比φ及其预混燃气总流速vpremixed)

    Table  1.   Parameters for combustion experiments (Chamber pressure p, flow rates for air through burner QAir and for fuel CH4 QCH4, equivalence ratios φ, premixed gas velocity vpremixed)

    p/MPa QCH4/SLM QAir/SLM φ vpremixed/(cm·s-1)
    Case 1 0.11 0.6 4.8 1.19 16.67
    Case 2 0.30 0.6 4.8 1.19 6.11
    Case 3 0.50 0.6 4.8 1.19 3.67
    下载: 导出CSV
  • [1] Liu J R, Hu Z Y, Zhang Z R. Laser spectroscopy applied to combustion diagnostics[J]. Optics and Precision Engineering, 2011, 19(2):284-296. doi: 10.3788/OPE.20111902.0284
    [2] Fourguette D C, Zurni R M, Long M B. Two dimensional Rayleigh thermometry in a turbulent nonpremixed Methane-Hydrogen flame[J]. Combustion Science Technology, 1986, 44(30):307-317. doi: 10.1080-00102208608960310/
    [3] 俞刚, 范学军.超声速燃烧与高超声速推进[J].力学进展, 2013, 43(5):449-454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201305001

    Yu G, Fan X J. Supersonic combustion and hypersonic propul-sion[J]. Progress in Mechanics, 2013, 43(5):449-454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201305001
    [4] McMillin B K, Palmer J L, Seitzman J M, et al. Two line instantaneous temperature imaging of NO in a scramjet model flow-field[R]. AIAA-93-0044, 1993.
    [5] Seitzman J M, Palmer J L, Antonio A L. Instantaneous planar thermometry of shock-heated flows using PLIF of OH[R]. AIAA-93-0802, 1993.
    [6] Elliott G S, Glumac N. Molecular filtered Rayleigh scattering applied to combustion turbulence[R]. AIAA-99-0643, 1999.
    [7] Elliott G S, Glumac N, Carter C D. Molecular filtered Rayleigh scattering applied to combustion[J]. Measurement Science and Technology, 2001, 12(4):452-466. doi: 10.1088/0957-0233/12/4/309
    [8] Miles R B, Lempert W R. Two-dimensional measurement of density, velocity, and temperature in turbulent high-speed air flows by UV Rayleigh scattering[J]. Applied Physics B, 1990, 51(4):1-7. doi: 10.1007/BF00332317
    [9] Forkey J N, Lempert W R, Miles R B. Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths[J]. Applied Optics, 1997, 36(27):6729-6738. doi: 10.1364/AO.36.006729
    [10] Hoffman D, Munch K U, Leipertz A. Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering[J]. Opt Lett, 1996, 21(7):525-527. doi: 10.1364/OL.21.000525
    [11] Doll U, Fischer M, Stockhausen G, et al. Frequency scanning filtered Rayleigh scattering in combustion experiments[C]//Proc of the 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 2012.
    [12] Doll U, Stockhausen G, Willert C. Pressure, temperature, and three-component velocity fields by filtered Rayleigh scattering velocimetry[J]. Optical Letter, 2017, 42(19):3773-3776. doi: 10.1364/OL.42.003773
    [13] Schroll M, Doll U, Stockhausen G, et al. Flow field characterization at the outlet of a lean burn single-sector combustor by laser-optical methods[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(6):011503. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3563e908fdf24b72e33bde6ff0a76bc4
    [14] 王晟, 刘晶儒, 胡志云, 等.用于燃烧场诊断的分子滤波瑞利散射技术[J].光学精密工程, 2011, 19(2):445-461. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201102032

    Wang S, Liu J R, Hu Z Y, et al. Development of filtered Rayleigh scattering for combustion diagnostic application[J]. Optics and Precision Engineering, 2011, 19(2):445-461. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201102032
    [15] 郑尧邦, 陈力, 苏铁, 等.滤波瑞利散射测温技术研究[C]//中国空气动力学会测控技术专委会学术交流会论文集. 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=8056120

    Zheng Y B, Chen L, Su T, et al. Study on the temperature measurement by filtered ray-leigh scattering[C]//Proc of Academic Exchange Meeting of China Aerodynamic Society Measurement and Control Technical Committee. 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=8056120
    [16] Tenti G, Boley C D, Desai R C. On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases[J]. Canadian Journal of Physics, 1974, 52(2):285-290.
    [17] Pan X, Shneider M N, Miles R B. Coherent Rayleigh-Brillouin scattering in molecular gases[J]. Physical Review A, 2004, 69(3):33814-33822. doi: 10.1103/PhysRevA.69.033814
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  165
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-14
  • 修回日期:  2019-02-19
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日