留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双光场相机的高分辨率光场三维PIV技术

梅迪 丁俊飞 施圣贤

梅迪, 丁俊飞, 施圣贤. 基于双光场相机的高分辨率光场三维PIV技术[J]. 实验流体力学, 2019, 33(2): 57-65. doi: 10.11729/syltlx20180165
引用本文: 梅迪, 丁俊飞, 施圣贤. 基于双光场相机的高分辨率光场三维PIV技术[J]. 实验流体力学, 2019, 33(2): 57-65. doi: 10.11729/syltlx20180165
Mei Di, Ding Junfei, Shi Shengxian. High resolution volumetric light field particle image velocimetry with dual plenoptic cameras[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 57-65. doi: 10.11729/syltlx20180165
Citation: Mei Di, Ding Junfei, Shi Shengxian. High resolution volumetric light field particle image velocimetry with dual plenoptic cameras[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 57-65. doi: 10.11729/syltlx20180165

基于双光场相机的高分辨率光场三维PIV技术

doi: 10.11729/syltlx20180165
基金项目: 

国家自然科学基金项目 11472175

国家自然科学基金项目 11772197

详细信息
    作者简介:

    梅迪(1993-), 湖北恩施人, 硕士研究生。研究方向:光场三维流动测试技术。通信地址:上海交通大学机械与动力工程学院(200240)。E-mail:meidisjtu@sjtu.edu.cn

    通讯作者:

    施圣贤, kirinshi@sjtu.edu.cn

  • 中图分类号: V211.71

High resolution volumetric light field particle image velocimetry with dual plenoptic cameras

  • 摘要: 光场相机粒子图像测速(Light Field Particle Image Velocimetry,LF-PIV)是一种近几年新发展起来的流动测试手段,能够仅通过单个光场相机测量3D-3C瞬态速度场,简化了三维流场测量的实验复杂度,特别是能实现受限空间的三维速度场测量。然而这一技术尚存在一些不足:由于光场相机沿景深方向的空间分辨率较低,沿该方向的速度测量精度低于垂直于景深方向的测量精度。本文尝试从硬件角度入手,发展一种双光场相机流动测试技术,通过增大对示踪粒子的观察视角,来提高光场三维测量系统沿景深方向的空间分辨率。基于乘积代数迭代技术(Multiplicative Algebraic Reconstruction Technique,MART),开发了针对双光场相机的粒子三维重构算法。分别利用直接数值模拟(Direct Numerical Simulation,DNS)水射流的数字合成图像与低速水射流涡环的实验图像,将双光场相机的测量结果与单光场相机的测量结果进行对比分析研究。结果表明双光场相机与单光场相机相比显著提高了相机沿景深方向的测量精度。
  • 图  1  双光场相机PIV系统工作流程示意图

    Figure  1.  Working principle of dual light-field cameras PIV

    图  2  光场4D函数

    Figure  2.  4D parameterization of light field

    图  3  光场相机实物和原始图片

    Figure  3.  Light field camera and its raw image

    图  4  光场相机光线追踪过程示意图[24]

    Figure  4.  Schematic of light filed camera ray tracing[24]

    图  5  数字合成粒子光场图像

    Figure  5.  Synthetic light field images of the particle

    图  6  点光源的弥散圆及其影响的像素位置示意图

    Figure  6.  Diffusion circle and the affected pixels of a point source

    图  7  权重系数计算原理示意图

    Figure  7.  Schematic diagram of calculating principle of weight coefficient

    图  8  体校准及重构算法流程图

    Figure  8.  Flowchat of the volumetric calibration and reconstruction algorithm

    图  9  DNS射流合成图像计算结果对比

    Figure  9.  Comparison of calculation results of synthetic images of DNS jet

    图  10  测量误差结果对比(z方向为光轴方向)

    Figure  10.  Comparison of measurement errors between single and dual cameras

    图  11  涡环实验装置示意图

    Figure  11.  Schematic of vortex-ring experimental apparatuses

    图  12  涡环实验速度场对比(z方向为光轴方向)

    Figure  12.  Velocity fields of the vortex-ring experiment

    图  13  单光场相机和双光场相机的速度散度概率密度函数对比

    Figure  13.  Comparison of the probability density function on the divergence error of the single- and dual-camera configurations

  • [1] Adrian R J, Westerweel J. Particle image velocimetry[M]. Cambridge:Cambridge University Press, 2011.
    [2] Schroeder A, Willert C E. Particle image velocimetry:new developments and recent applications[M]. New York:Springer, 2008:1-33.
    [3] Raffel M, Willert C E, Wereley S, et al. Particle image velocimetry a practical guide[M]. 2nd ed. New York: Springer, 2007.
    [4] Prasad A K, Adrian R J. Stereoscopic particle image velocimetry applied to liquid flows[J]. Experiments in Fluids, 1993, 15(1):49-60. doi: 10.1007/BF00195595
    [5] Brücker C. 3-D scanning particle image velocimetry:technique and application to a spherical cap wake flow[J]. Applied Scientific Research, 1996, 56(2-3):157-179. doi: 10.1007/BF02249379
    [6] Hori T, Sakakibara J. High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids[J]. Measurement Science and Technology, 2004, 15(6):1067-1078. doi: 10.1088/0957-0233/15/6/005
    [7] Hinsch K D. Holographic particle image velocimetry[J]. Measurement Science and Technology, 2002, 13(7):R61-R72. doi: 10.1088/0957-0233/13/7/201
    [8] Arroyo M, HinschK. Recent developments of PIV towards 3D measurements[M]//Particle Image Velocimetry:new developments and recent applications. New York:Springer, 2008.
    [9] Katz J, Sheng J. Applications of holography in fluid mechanics and particle dynamics[J]. Annual Review of Fluid Mechanics, 2010, 42(1):531-555. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=462560de369eab9ce1805a898457dc6d
    [10] Scarano F. Tomographic PIV:principles and practice[J]. Mea-surement Science and Technology, 2013, 24(1):1-28. http://d.old.wanfangdata.com.cn/Periodical/zhcmj201602003
    [11] Elsinga G E, Scarano F, Wieneke B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41(6):933-947. doi: 10.1007/s00348-006-0212-z
    [12] Gao Q, Wang H P, Wang J J. A single camera volumetric particle image velocimetry and its application[J]. Science China Technological Sciences, 2012, 55(9), 2501-2510. doi: 10.1007/s11431-012-4921-7
    [13] Belden J, Truscott T T, Axiak M C, et al. Three-dimensional synthetic aperture particle image velocimetry[J]. Measurement Science and Technology, 2010, 21(12):1-21. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220104262/
    [14] Ng R, Levoy M, Bredif M, et al. Light field photography with a hand-held plenoptic camera[R]. Tech report CTSR 2005-02, California: Stanford University, 2005.
    [15] Ng R. Digital light field photography[D]. California: Stanford University, 2006.
    [16] Lytro Inc. Lytroillum[EB/OL].[2016-09-10]. https: //www.lytro.com.
    [17] Raytrix GmbH Inc. 3D light field camera solutions.. https: //www.raytrix.de/produkte.
    [18] Chen H, Sick V. Plenoptic particle tracking velocimetry for internal combustion engine measurements[C]. The 11th International Symposium on Particle Image Velocimetry-PIV15, Santa Barbara, California, 2015.
    [19] Ding J F, Wang J H, Liu Y Z, et al. Dense ray tracing based reconstruction algorithm for light field volumetric particle imagevelocimetry[C]. The 7th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion. Melbourne, Australia, 2015.
    [20] Fahringer T W, Lynch K P, Thurow B S. Volumetric particle image velocimetry with a single plenoptic camera[J]. Measurement Science and Technology, 2015, 26(11):115201. doi: 10.1088/0957-0233/26/11/115201
    [21] Soria J, Atkinson C. Towards 3C-3D digital holographic fluid velocity vector field measurement tomographic digital holographic PIV (Tomo-HPIV)[J]. Measurement Science and Technology, 19(7):074002. doi: 10.1088/0957-0233/19/7/074002
    [22] Levoy M. Light fields and computational imaging[J]. Computer, 2006, 39(8):46-55. doi: 10.1109/MC.2006.270
    [23] Levoy M, Hanrahan P. Light field rendering[J]. ACM Trans Graph, 1996:31-42. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a199810004
    [24] Shi S X, Wang J H, Ding J F, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement and Instrumentation, 2016, 49:70-88. doi: 10.1016/j.flowmeasinst.2016.05.006
    [25] 丁俊飞, 许晟明, 施圣贤.光场单相机三维流场测试技术[J].实验流体力学, 2016, 30(6):51-58. http://www.syltlx.com/CN/abstract/abstract10980.shtml

    Ding J F, Xu S M, Shi S X. Light field volumetric particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6):51-58. http://www.syltlx.com/CN/abstract/abstract10980.shtml
    [26] Georgiev T, Zheng K, Curless B, et al. Spatio-angular resolution tradeoff in integral photography[C]. The 17th Eurographics Symposium on Rendering. Cyprus, 2006.
    [27] 马颂德, 张正友.计算机视觉[M].北京:科学出版社, 1998.
    [28] Shi S X, Ding J F, New T H, et al. Volumetric calibration for single-camera light field PIV[J]. Experiments in Fluids, 2019, 60:21. doi: 10.1007/s00348-018-2670-5
    [29] Shi S X, Ding J F, Atkinson C, et al. A detailed comparison of single-camera light-field PIV and tomographic PIV[J]. Experiments in Fluids, 2018, 59(3):46. doi: 10.1007/s00348-018-2500-9
    [30] Couch L D, Krueger P S. Experimental investigation of vortex rings impinging on inclined surfaces[J]. Experiments in Fluids, 2011, 51(4):1123-1138. doi: 10.1007/s00348-011-1135-x
  • 加载中
图(13)
计量
  • 文章访问数:  610
  • HTML全文浏览量:  304
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-14
  • 修回日期:  2019-01-11
  • 刊出日期:  2019-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日