留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

催化效应对气动热环境影响的流动-传热耦合数值分析

王国林 周印佳 金华 孟松鹤

王国林, 周印佳, 金华, 等. 催化效应对气动热环境影响的流动-传热耦合数值分析[J]. 实验流体力学, 2019, 33(3): 13-19. doi: 10.11729/syltlx20180159
引用本文: 王国林, 周印佳, 金华, 等. 催化效应对气动热环境影响的流动-传热耦合数值分析[J]. 实验流体力学, 2019, 33(3): 13-19. doi: 10.11729/syltlx20180159
Wang Guolin, Zhou Yinjia, Jin Hua, et al. Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 13-19. doi: 10.11729/syltlx20180159
Citation: Wang Guolin, Zhou Yinjia, Jin Hua, et al. Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 13-19. doi: 10.11729/syltlx20180159

催化效应对气动热环境影响的流动-传热耦合数值分析

doi: 10.11729/syltlx20180159
基金项目: 

国家自然科学基金青年科学基金项目 11502058

黑龙江省博士后启动基金项目 然科学基金青年科学基金项目(11502058);黑龙江省博士后启动基金项目(

中央高校基本科研业务专项资金资助项 HIT.NSRIF.201823

详细信息
    作者简介:

    王国林(1973-), 男, 甘肃定西人, 研究员.研究方向:非平衡流与材料耦合传热传质.通信地址:四川省绵阳市二环路南段6号15信箱(621000).E-mail:wgl65269@163.com

    通讯作者:

    金华, E-mail:jinhua2007@hit.edu.cn

  • 中图分类号: V211.73

Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis

  • 摘要: 鉴于高超声速飞行中高温气体效应带来的壁面催化反应可显著增加气动热载荷,在气动热环境与结构热响应的分析与预报中需充分考虑催化反应带来的影响。将简化原子复合催化模型和有限速率催化反应模型嵌入超高速流动-传热耦合分析模型中,建立超高速流动/催化反应/传热多场耦合分析模型。其中,通过高频等离子风洞的催化特性测试获得ZrB2-SiC超高温陶瓷材料表面催化系数与温度的函数关系,对比分析耦合计算和非耦合计算、简化原子复合催化模型和有限速率催化反应模型对气动热环境的影响和适应性,结果表明材料表面催化特性对壁面总热流有重大影响。对于具有较高热导率材料的热响应,耦合传热分析能够有效避免非耦合计算带来的过度高估的结果,而有限速率催化反应模型可有效提高计算精度。在此基础之上,通过耦合传热分析,揭示了催化反应与壁面传热的内在关系,证明了在传热分析中考虑表面催化效应可提升结构热响应精度和防热系统精细化设计的能力。
  • 图  1  考虑表面反应后的耦合策略

    Figure  1.  Coupling approach with surface reaction considered

    图  2  不同试验状态下试样表面热流密度和温度历程

    Figure  2.  Change curve of surface heat flux and temperature with increasing time under different states

    图  3  不同状态下试样表面催化系数

    Figure  3.  The catalytic coefficient with different states

    图  4  几何模型

    Figure  4.  Geometry model

    图  5  有无固体热传导时的表面温度分布

    Figure  5.  Comparison of surface temperature distributions with and without heat conduction

    图  6  有无固体热传导时的表面热流分布

    Figure  6.  Comparison of surface heat flux distributions with and without heat conduction

    图  7  材料表面催化特性随热导率、时间和位置的变化

    Figure  7.  The change of material surface catalytic property with thermal conductivity, time and surface location

    图  8  几何模型和计算网格

    Figure  8.  Geometry and computational grid

    图  9  驻点热流随时间变化

    Figure  9.  Time evolution of the stagnation point heat flux

    图  10  t=500s时表面温度分布

    Figure  10.  Surface temperature distributions at t=500s

    图  11  驻点处换热系数随时间变化

    Figure  11.  The heat transfer coefficient of stagnation point varying with time

    图  12  驻点处换热系数随温度变化曲线

    Figure  12.  The heat transfer coefficient of stagnation point varying with temperature

    表  1  表面催化反应和反应速率

    Table  1.   Surface catalytic reactions and rates

    Reaction Type S0 / γer E/(J·mol-1)
    1 O+(s)→O(s) ads 0.050 0
    2 N+(s)→N(s) ads 0.050 0
    3 O+O(s)→O2+(s) ER 0.001 9000
    4 N+N(s)→N2+(s) ER 0.001 9000
    5 O(s)+ N(s)→NO+2(s) LH 0.200 300000
    下载: 导出CSV

    表  2  高频等离子风洞流场参数

    Table  2.   Wind tunnel parameters

    State ps/kPa ht/(kJ·kg-1) CO CN ps/kPa
    A A01 3.10 19271 0.233 0.209 3.32
    A02 3.17 24087 0.233 0.316
    A03 3.21 27067 0.234 0.382
    A04 3.25 29824 0.234 0.445
    A05 3.48 32840 0.234 0.518
    A06 3.46 43343 0.234 0.691
    B B01 5.57 20250 0.233 0.187 5.81
    B02 5.76 23977 0.233 0.268
    B03 5.80 28154 0.233 0.351
    B04 5.86 30509 0.233 0.407
    B05 6.07 35859 0.233 0.511
    下载: 导出CSV

    表  3  耦合传热下驻点压力、热流和温度

    Table  3.   Stagnation pressures, surface heat flux and temperature under coupling heat conduction

    Test Case γw p/kPa qs/(MW·m-2) T/K
    Fully catalytic 1.000 336.5 30.53 4046.90
    Partially catalytic 0.100 336.5 27.20 3722.82
    Partially catalytic 0.010 336.5 26.02 3601.71
    Partially catalytic 0.001 336.5 25.88 3570.50
    Non catalytic 0 336.5 25.75 3550.44
    下载: 导出CSV
  • [1] Chen Y K, Henline W D, Tauber M E. Mars pathfinder trajectory based heating and ablation calculations[J]. Journal of Spacecraft and Rockets, 1995, 32(2):225-230. doi: 10.2514/3.26600
    [2] Adam J C. Coupled fluid-thermal-structural modeling and analysis of hypersonic flight vehicle structures[D]. Columbus: Ohio State University, 2010.
    [3] Olynick D R, Henline W D. Navier-Stokes heating calculations for benchmark thermal protection system sizing[J]. Journal of Spacecraft and Rockets, 1996, 33(6):807-814. doi: 10.2514/3.26842
    [4] Calvo J, Mack A, Bozic O. Study of the heating of a hypersonic projectile through a multidisciplinary simulation[C]//Proc of European Conference on Computational Fluid Dynamics. 2006.
    [5] Molvik G A, Milos F S, Chen Y K, et al. Computation of high speed flow fields with multidimensional heat conduction[R]. AIAA-1995-2116, 1995.
    [6] Yamamoto Y, Yoshioka M. CFD and FEM coupling analysis of OREX aerothermodynamic flight data[R]. AIAA-1995-2087, 1995.
    [7] Thornton E A, Dechaumphai P. Coupled flow, thermal, and structural analysis of aerodynamically heated panels[J]. Journal of Aircraft, 1988, 25(11):1052-1059. doi: 10.2514/3.45702
    [8] 桂业伟, 袁湘江.类前缘防热层流场与热响应耦合计算研究[J].工程热物理学报, 2002, 23(6):733-735. doi: 10.3321/j.issn:0253-231X.2002.06.022

    Gui Y W, Yuan X J. Numerical simulation on the coupling phenomena of aerodynamic heating with thermal response in the region of the leading edge[J]. Journal of Engineering Thermophysics, 2002, 23(6):733-735. doi: 10.3321/j.issn:0253-231X.2002.06.022
    [9] 张兵, 韩景龙.多场耦合计算平台与高超声速热防护结构传热问题研究[J].航空学报, 2011, 32(3):400-409. http://d.old.wanfangdata.com.cn/Periodical/hkxb201103003

    Zhang B, Han J L. Multi-field coupled computing platform and thermal transfer of hypersonic thermal protectionstrucutres[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3):400-409. http://d.old.wanfangdata.com.cn/Periodical/hkxb201103003
    [10] Zhang S T, Chen F, Liu H. Interated of fluid-thermal-structural analysis for predicting aerothermal environment of hypersonic vehicles[R]. AIAA-2014-1394, 2014.
    [11] 孟松鹤, 金华, 王国林, 等.热防护材料表面催化特性研究进展[J].航空学报, 2014, 35(2):287-302. http://d.old.wanfangdata.com.cn/Periodical/hkxb201402001

    Meng S H, Jin H, Wang G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):287-302. http://d.old.wanfangdata.com.cn/Periodical/hkxb201402001
    [12] Paterna D, Monti R, Savino R, et al. Experimental and numerical investigation of martian atmosphere entry[J]. Journal of Thermophysics and Heat Transfer, 2002, 39(2):227-236. http://cn.bing.com/academic/profile?id=ca0050fa6402209d0d4a2b4e4e313f28&encoded=0&v=paper_preview&mkt=zh-cn
    [13] Wright M, Loomis M, Papadopoulos P. Aerothermal analysis of the project fire Ⅱ afterbody flow[J]. AIAA-2001-3065, 2001.
    [14] 杨肖峰, 唐伟, 桂业伟. MSL火星探测器高超声速流场预测及气动性分析[J].宇航学报, 2015, 36(4):383-389. doi: 10.3873/j.issn.1000-1328.2015.04.003

    Yang X F, Tang W, Gui Y W. Hypersonic flow field prediction and aerodynamics analysis for MSL entry capsule[J]. Journal of Astronautics, 2015, 36(4):383-389. doi: 10.3873/j.issn.1000-1328.2015.04.003
    [15] 刘宗庆, 董维中, 丁明松, 等.火星探测器气动热环境和其动力特性的数值模拟研究[J].空气动力学学报, 2018, 36(4):642-650. doi: 10.7638/kqdlxxb-2016.0053

    Liu Q Z, Dong W Z, Ding M S, et al. Numerical simulation of aerothermal environments and aerodynamic characteristics of Mars entry capsules[J]. Acta Aerodynamics Sinica, 2018, 36(4):642-650. doi: 10.7638/kqdlxxb-2016.0053
    [16] Voinov L, Zalogin G N, Lunev V V, et al. Comparative analysis of laboratory and full-scale data on the catalycity of the heat shield for the Bor and Buran orbital vehicles[J]. Cosmonautics and Rocket Production, 1994, 2:51-57.
    [17] 董维中, 乐嘉陵, 刘伟雄.驻点壁面催化速率常数确定的研究[J].流体力学实验与测量, 2000, 14(3):1-6. doi: 10.3969/j.issn.1672-9897.2000.03.001

    Dong W Z, Le J L, Liu W X. The determination of catalyticreate constant of surface materials of testing model in the shock tube[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):1-6. doi: 10.3969/j.issn.1672-9897.2000.03.001
    [18] 苗文博, 程晓丽, 艾邦成.壁面催化条件对热环境预测的影响[J].航天器环境工程, 2009, 26(增刊):45-49. http://d.old.wanfangdata.com.cn/Periodical/htqhjgc2009z1013

    Miao W B, Cheng X L, Ai B C. The influence of catalyze condition on the thermal environment predicting[J]. Spacecraft Environment Engineering, 2009, 26(S):45-49. http://d.old.wanfangdata.com.cn/Periodical/htqhjgc2009z1013
    [19] 苗文博, 程晓丽, 艾邦成, 等.高超声速流动壁面催化复合气动加热特性[J].宇航学报, 2013, 34(3):442-446. doi: 10.3873/j.issn.1000-1328.2013.03.021

    Miao W B, Cheng X L, Ai B C, et al. Surface catalysis recombination aero heating characteristics of hypersonic flow[J]. Journal of Astronautics, 2013, 34(3):442-446. doi: 10.3873/j.issn.1000-1328.2013.03.021
    [20] 李海燕, 石安华, 马平, 等.高超声速非平衡流研究进展[C]//中国力学大会论文集. 2017.

    Li H Y, Shi A H, Ma P, et al, Recent advances in hypersonic non-equilibrium flows[C]//Proc of the Chinese Congress of Theoretical and Applied Mechanics. 2017.
    [21] Inger G R, Gnoffo P A. Hypersonic entry heating with discontinuous surfacecatalycity-A combined analytic/CFD approach[R]. AIAA-1996-2150, 1996.
    [22] Prabhu D K, Venkatapathy E, Kontinos D A, et al. X-33 catalytic heating[R]. AIAA-1998-2844, 1998.
    [23] Scott C D, Derry S M. Catalytic recombination and space shuttle heating[R]. AIAA-1982-0841, 1982.
    [24] Ranuzzi G, Grass F, Bisceglia S. Effects of the surface catalysis on high-enthalpy shock- wave/turbulent boundary-layer interactions[R]. AIAA-2005-3219, 2005.
    [25] Viviani A, Pezzella G. Influence of surface catalyticity on reentry aerothermodynamics and heat shield[R]. AIAA-2007-4047, 2007.
    [26] Grumet A A, Anderson J D. The effects of surface catalysis on the hypersonic shock wave/boundary layer interaction[R]. AIAA-1994-2073, 1994.
    [27] Mizoguchi M, Iwata N, Hayashi K, et al. Reduction of aerodynamic heating with wall catalysis by film cooling[R]. AIAA-2006-8068, 2006.
    [28] Shirouzu M, Inouye Y, Watanabe S, et al. Overview of aero and aerothermodynamic researches on HOPE-X and related activities in Japan[R]. AIAA-2004-2426, 2004.
    [29] Peigin S, Kazak V. 3D Thermochemical nonequilibrium viscous gas flow over blunt bodies with catalytic surface at attack and slip angles[R]. AIAA-99-3628, 1999.
    [30] 董维中, 高铁锁, 丁明松, 等.高超声速飞行器表面温度分布与气动热耦合数值研究[J].航空学报, 2016, 36(25):311-324. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501025

    Dong W Z, Gao T S, Ding M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2016, 36(25):311-324. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501025
    [31] Laux T, Feigl M, Stöckle T, et al. Estimation of the surface catalyticity of PVD coatings by simultaneous heat flux and LIF measurements in high enthalpy air flows[R]. AIAA-2000-2364, 2000.
    [32] Kurotaki T. Catalytic Model on SiO2-based surface and application to real trajectory[J]. Journal of Spacecraft and Rockets, 2001, 38(5):798-800. doi: 10.2514/2.3749
    [33] 周印佳, 孟松鹤, 解维华, 等.高超声速飞行器热环境与结构传热的多场耦合数值研究[J].航空学报, 2016, 37(9):2739-2748. http://d.old.wanfangdata.com.cn/Periodical/hkxb201609012

    Zhou Y J, Meng S H, Xie W H, et al. Multi-field coupling numerical analysis of aerothermal environment and structureal heat transfer of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2739-2748. http://d.old.wanfangdata.com.cn/Periodical/hkxb201609012
    [34] 刘丽萍, 王国林, 王一光, 等.高焓化学非平衡流条件下防热材料表面催化特性的试验方法[J].航空学报, 2017, 38(10):121317-1-9. http://d.old.wanfangdata.com.cn/Periodical/hkxb201710010

    Liu L P, Wang G L, Wang Y G, et al. Test methods for determining surface catalytic properties of thermal protection materials in high enthalpy chemical non-equilibrium flows[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121317-1-9. http://d.old.wanfangdata.com.cn/Periodical/hkxb201710010
    [35] 刘丽萍, 王国林, 王一光, 等.高焓化学非平衡流条件下C/SiC复合材料的催化性能[J].航空学报, 2018, 39(5):621696-1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201805021

    Liu L P, Wang G L, Wang Y G, et al. Catalytic performance of C/SiC composites in high enthalpy chemical non-equilibrium flow[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):621696-1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201805021
    [36] Anderson J D. Hypersonic and high temperature gas dynamics[M]. New York:McGraw-Hill, 2006.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  211
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 修回日期:  2018-12-27
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日