留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于温敏漆的边界层转捩测量技术研究

黄辉 熊健 刘祥 祝茂林 李永红

黄辉, 熊健, 刘祥, 等. 基于温敏漆的边界层转捩测量技术研究[J]. 实验流体力学, 2019, 33(2): 79-84. doi: 10.11729/syltlx20180144
引用本文: 黄辉, 熊健, 刘祥, 等. 基于温敏漆的边界层转捩测量技术研究[J]. 实验流体力学, 2019, 33(2): 79-84. doi: 10.11729/syltlx20180144
Huang Hui, Xiong Jian, Liu Xiang, et al. Study of the boundary layer transition detection technique based on TSP[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 79-84. doi: 10.11729/syltlx20180144
Citation: Huang Hui, Xiong Jian, Liu Xiang, et al. Study of the boundary layer transition detection technique based on TSP[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 79-84. doi: 10.11729/syltlx20180144

基于温敏漆的边界层转捩测量技术研究

doi: 10.11729/syltlx20180144
详细信息
    作者简介:

    黄辉(1985-), 男, 四川资阳人, 硕士, 工程师。研究方向:风洞测控技术。通信地址:四川省绵阳市二环路南段6号(621000).E-mail:285862216@qq.com

    通讯作者:

    黄辉, E-mail: 285862216@qq.com

  • 中图分类号: V211.71

Study of the boundary layer transition detection technique based on TSP

  • 摘要: 以自然层流翼型RAE5243模型为研究对象,在0.6m跨超声速风洞进行温敏漆(Temperature Sensitive Paint,TSP)转捩测量技术研究,在Ma0.73和Ma0.75条件下开展了模型基本外形和鼓包外形的转捩测量试验。针对缺乏定量分析手段的问题,提出基于温度梯度的转捩位置自动判定算法,包括图像预处理、转捩点定位与筛选和转捩位置计算3个步骤。模型温度分布及转捩测量结果表明:重复性试验结果偏差较小,验证了转捩测量结果的可靠性;相同马赫数条件下,鼓包外形转捩位置相对基本外形向后缘移动;相同外形条件下,Ma0.75的转捩位置相对Ma0.73向后缘移动。TSP试验结果与CFD计算结果吻合较好,变化趋势一致,检验了数值模拟方法的有效性。
  • 图  1  TSP校准曲线

    Figure  1.  TSP calibration curves

    图  2  基于温度分布的转捩测量原理

    Figure  2.  Principle of the transition detection based on temperature distribution

    图  3  基本外形与鼓包外形

    Figure  3.  Baseline configuration and the configuration with shock control bump

    图  4  模型及测量设备

    Figure  4.  Model and measuring equipment

    图  5  温度分布图像

    Figure  5.  Temperature distribution images

    图  6  测压孔位置拟合曲线

    Figure  6.  Pressure tap position fitting curve

    图  7  基本外形转捩位置(Ma=0.73, α=0°)

    Figure  7.  Transition location of baseline configuration (Ma=0.73, α=0°)

    图  8  鼓包外形转捩位置(Ma=0.73, α=0°)

    Figure  8.  Transition location of the configuration with shock control bump (Ma=0.73, α=0°)

    图  9  TSP与CFD转捩位置对比(Ma=0.73, α=0°)

    Figure  9.  Transition locations comparison between TSP and CFD (Ma=0.73, α=0°)

    表  1  转捩位置判定结果

    Table  1.   Transition positioning result

    模型 Ma 转捩位置
    (全部)
    转捩位置
    (上半区域)
    转捩位置
    (下半区域)
    基本外形 0.73 (TSP) 0.605c 0.605c 0.604c
    0.73 (TSP) 0.604c 0.604c 0.606c
    0.73 (CFD) 0.560c
    0.75 (TSP) 0.618c 0.615c 0.614c
    0.75 (CFD) 0.570c
    鼓包外形 0.73 (TSP) 0.628c 0.628c 0.635c
    0.73 (TSP) 0.629c 0.628c 0.636c
    0.73 (CFD) 0.615c
    0.75 (TSP) 0.648c 0.642c 0.651c
    0.75 (CFD) 0.630c
    下载: 导出CSV
  • [1] Vavra A J, Solomon W D, Drake A. Comparison of boundary layer transition measurement techniques on a laminar flow wing[R]. AIAA-2005-1030, 2005.
    [2] 胡成行, 黄叙辉, 李红梅, 等.应用脉动压力测试技术探测边界层转捩[J].流体力学实验与测量, 2002, 16(2):67-71. doi: 10.3969/j.issn.1672-9897.2002.02.013

    Hu C H, Huang X H, Li H M, et al. The location of boundary-layer transition detected by pressure fluctuation measurements[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(2):67-71. doi: 10.3969/j.issn.1672-9897.2002.02.013
    [3] 董昊, 耿玺, 陆纪椿, 等.翼型边界层转捩热/油膜及红外测量技术的对比[J].南京航空航天大学学报, 2013, 45(6):792-796. doi: 10.3969/j.issn.1005-2615.2013.06.009

    Dong H, Geng X, Lu J C, et al. Comparative investigation on hot film, oil film and infrared measurement techniques of airfoil boundary layer transition[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(6):792-796. doi: 10.3969/j.issn.1005-2615.2013.06.009
    [4] Richter K, Schülein E. Boundary-layer transition measurements on hovering helicopter rotors by infrared thermography[J]. Exp Fluid, 2014, 55(7):1755. doi: 10.1007/s00348-014-1755-z
    [5] Markus R, Christoph B M. Differential infrared thermography for unsteady boundary-layer transition measurements[J]. AIAA Journal, 2014, 52(9):2090-2093. doi: 10.2514/1.J053235
    [6] Daisuke Y, Keisuke A, Christian K, et al. Transition detection on rotating propeller blades by means of temperature-sensitive paint[R]. AIAA-2012-1187, 2012.
    [7] Fey U, Engler R H, Egami Y, et al. Transition detection by temperature sensitive paint at cryogenic temperatures in the european transonic wind tunnel (ETW)[C]//Proc of the 20th International Congress on Instrumentation in Aerospace Simulation Facilities. 2003.
    [8] Fey U, Konrath R, Kirmse T, et al. Advanced measurement techniques for high Reynolds number testing in cryogenic wind tunnels[R]. AIAA-2010-1301, 2010.
    [9] Christian K, Ulrich H, Marco C, et al. Development of a highly sensitive temperature sensitive paint for measurements under cryogenic temperature (100-160K) conditions[R]. AIAA-2016-0650, 2016.
    [10] Christian K, Ulrich H, Werner S, et al. Application of carbon nanotubes (CNT) and temperature-sensitive paint (TSP) for the detection of Boundary layer transition[R]. AIAA-2014-1482, 2014.
    [11] Costantini M, Fey U, Henne U, et al. Influence of non-adiabatic model surface on transition measurements using the temperature-sensitive paint technique in a cryogenic wind tunnel[R]. AIAA-2012-2830, 2012.
    [12] Amanda C, Christopher A C W, Laura E L, et al. Transition research with temperature-sensitive paints in the boeing/AFOSR Mach-6 quiet tunnel[R]. AIAA-2011-3872, 2011.
    [13] 宋亚娇, 孙晶, 闫玲玲, 等. Eu0.5La0.5(TTA)3/PMMA温敏漆的制备及性能研究[J].中国稀土学报, 2013, 31(1):55-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgxtxb201301010

    Song Y J, Sun J, Yan L L, et al. Preparation and properties of Eu0.5La0.5(TTA)3/PMMA temperature sensitive paint[J]. Journal of The Chinese Society of Rare Earths, 2013, 31(1):55-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgxtxb201301010
    [14] 尚金奎, 王鹏, 陈柳生, 等. TSP技术在转捩测量中的应用研究[J].空气动力学学报, 2015, 33(4):464-469. doi: 10.7638/kqdlxxb-2014.0034

    Shang J K, Wang P, Chen L S, et al. Application research of TSP technique in transition detection[J]. Acta Aerodynamica Sinica, 2015, 33(4):464-469. doi: 10.7638/kqdlxxb-2014.0034
    [15] 张扣立, 常雨, 孔荣宗, 等.温敏漆技术及其在边界层转捩测量中的应用[J].宇航学报, 2013, 34(6):860-865. doi: 10.3873/j.issn.1000-1328.2013.06.017

    Zhang K L, Chang Y, Kong R Z, et. al. Temperature sensitive paint technique and its application in measurement of boundary layer transition[J]. Journal of Astronautics, 2013, 34(6):860-865. doi: 10.3873/j.issn.1000-1328.2013.06.017
    [16] 尚金奎, 衷洪杰, 赵民, 等. TSP转捩探测技术在民机风洞试验中的应用研究[J].空气动力学学报, 2016, 34(3):341-345. doi: 10.7638/kqdlxxb-2015.0106

    Shang J K, Zhong H J, Zhao M, et al. Application of TSP transition detection technique for a civil aircraft[J]. Acta Aerodynamica Sinica, 2016, 34(3):341-345. doi: 10.7638/kqdlxxb-2015.0106
    [17] Campbell B, Liu T, Sullivan J P. Temperature sensitive fluorescent paint systems[R]. AIAA-94-2483, 1994.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  140
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-28
  • 修回日期:  2018-12-12
  • 刊出日期:  2019-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日