留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低雷诺数下翼尖涡统计特性实验研究

薛栋 潘翀 袁先士 刘瑞卿

薛栋, 潘翀, 袁先士, 等. 低雷诺数下翼尖涡统计特性实验研究[J]. 实验流体力学, 2019, 33(5): 36-41. doi: 10.11729/syltlx20180129
引用本文: 薛栋, 潘翀, 袁先士, 等. 低雷诺数下翼尖涡统计特性实验研究[J]. 实验流体力学, 2019, 33(5): 36-41. doi: 10.11729/syltlx20180129
Xue Dong, Pan Chong, Yuan Xianshi, et al. Experimental investigation on the characteristics of wingtip vortex at low Reynolds number[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 36-41. doi: 10.11729/syltlx20180129
Citation: Xue Dong, Pan Chong, Yuan Xianshi, et al. Experimental investigation on the characteristics of wingtip vortex at low Reynolds number[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 36-41. doi: 10.11729/syltlx20180129

低雷诺数下翼尖涡统计特性实验研究

doi: 10.11729/syltlx20180129
基金项目: 

国家自然科学基金项目 11672020

国家自然科学基金项目 11721202

中国兵器工业集团公司基础性创新团队支持计划项目 JSCX1802

详细信息
    作者简介:

    薛栋(1991-), 男, 陕西渭南人, 硕士, 工程师。研究方向:实验流体力学。通信地址:陕西省西安市雁塔区丈八东路10号西安现代控制技术研究所(710065)。E-mail:xuedong1202@buaa.edu.cn

    通讯作者:

    薛栋,E-mail: xuedong1202@buaa.edu.cn

  • 中图分类号: O357

Experimental investigation on the characteristics of wingtip vortex at low Reynolds number

  • 摘要: 翼尖涡的统计特性主要包括涡核半径、平均涡量、旋涡切向速度等,其准确测量是翼尖涡控制技术得以有效实施的重要前提。采用二维粒子图像测速技术在水洞中对椭圆机翼生成的翼尖涡尾流场进行了实验观测,测量区域覆盖翼尖涡发展的近场、中远场。针对涡对不稳定运动导致旋涡统计参数失真的情况,采用涡核中心对齐平均(re-centered average)的方法,屏蔽掉涡对不稳定运动对旋涡统计参数的影响,提高了统计结果的准确度。Re-centered average统计结果表明:涡核半径和涡量峰值随流向站位分别呈现出近似符合幂函数的增长和衰减规律;旋涡不稳定运动的振幅随机翼迎角增大而减小,表明涡对抵抗扰动的能力随涡强度的增大而增强。
  • 图  1  椭圆机翼模型

    Figure  1.  Elliptical wing model

    图  2  实验装置示意图

    Figure  2.  Schematic of the experimental setup

    图  3  翼尖涡平均涡量场沿流向站位分布,α=6°

    Figure  3.  Variation of the mean vorticity along stream-wise position at α=6°

    图  4  Temporal average和re-centered average方法统计得到的平均涡量场对比(x/b=9.5)

    Figure  4.  Comparison of mean vorticity obtained by temporal average and re-centered average methods at stream-wise location x/b=9.5

    图  5  Temporal average和re-centered average方法统计得到的切向速度分布对比,x/b=9.5

    Figure  5.  Comparison of tangential velocity obtained by temporal average and re-centered average methods at stream-wise location x/b=9.5

    图  6  Temporal average和re-centered average方法统计得到的涡核半径和涡量峰值对比,x/b=9.5

    Figure  6.  Comparison of vortex core radius and the peak vorticity obtained by temporal average and re-centered average methods at stream-wise location x/b=9.5

    图  7  Temporal average和re-centered average方法统计的切向速度峰值、涡核半径和涡量峰值相对误差,x/b=9.5

    Figure  7.  Relative difference of the peak tangential velocity, vortex core radius and peak vorticity obtained by temporal average and re-centered average methods at stream-wise location x/b=9.5

    图  8  涡核半径随流向站位的变化

    Figure  8.  Variation of the vortex radius with respect to the stream-wise location

    图  9  涡量峰值随流向站位的变化

    Figure  9.  Variation of the peak vorticity with respect to the stream-wise location

  • [1] Breitsamter C. Wake vortex characteristics of transport aircraft[J]. Progress in Aerospace Sciences, 2011, 47(2):89-134. doi: 10.1016/j.paerosci.2010.09.002
    [2] 黄烁桥, 申功炘, Robert K, 等.飞机尾流控制的SPIV实验研究[J].实验流体力学, 2009, 23(1):18-22. doi: 10.3969/j.issn.1672-9897.2009.01.004

    Huang S Q, Shen G X, Robert K, et al. Experimental study of SPIV on controlling wake vortex[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(1):18-22. doi: 10.3969/j.issn.1672-9897.2009.01.004
    [3] Chow J S, Zilliac G G, Bradshaw P. Mean and turbulence measurements in the near field of a wingtip vortex[J]. AIAA Journal, 1997, 35(10):1561-1567. doi: 10.2514/2.1
    [4] Bailey S C C, Tavoularis S. Measurements of the velocity field of a wing-tip vortex, wandering in grid turbulence[J]. Journal of Fluid Mechanics, 2008, 601:281-315. doi: 10.1017/S0022112008000694
    [5] Leweke T, Williamson C H K. Experiments on long-wavelength instability and reconnection of a vortex pair[J]. Physics of Fluids, 2011, 23(2):024101. doi: 10.1063/1.3531720
    [6] Bristol R L, Ortega J M, Marcus P S, et al. On cooperative instabilities of parallel vortex pairs[J]. Journal of Fluid Mechanics, 2004, 517:331-358. doi: 10.1017/S0022112004001016
    [7] Ortega J M, Bristol R L, Savas Ö. Experimental study of the instability of unequal-strength counter-rotating vortex pairs[J]. Journal of Fluid Mechanics, 2003, 474:35-84. doi: 10.1017/S0022112002002446
    [8] Thomas P J, Auerbach D. The observation of the simultaneous development of a long- and a short-wave instability mode on a vortex pair[J]. Journal of Fluid Mechanics, 1994, 265:289-302. doi: 10.1017/S0022112094000844
    [9] Heyes A L, Jones R F, Smith D A R. Wandering of wing-tip vortices[C]//Proceedings of the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 2004.
    [10] 薛栋, 潘翀, 李广超.基于流动显示的翼尖涡不稳定频率测量[J].北京航空航天大学学报, 2016, 42(4):837-843. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201604025

    Xue D, Pan C, Li G C. Measurement of wing-tip vortex instability time-scale by visualization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(4):837-843. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201604025
    [11] Jacquin L, Fabre D, Geffroy P, et al. The properties of a transport aircraft wake in the extended near field: an experimental study[R]. AIAA-2001-1038, 2001.
    [12] Hu Y, Wang J J. Dual leading-edge vortex structure for flow over a simplified butterfly model[J]. Experiments in Fluids, 2011, 50(5):1285-1292. doi: 10.1007/s00348-010-0990-1
    [13] 王洪平, 高琪, 魏润杰, 等.基于层析PIV的湍流边界层展向涡研究[J].实验流体力学, 2016, 30(2):59-66. http://www.syltlx.com/CN/abstract/abstract10918.shtml

    Wang H P, Gao Q, Wei R J, et al. Study of spanwise vortices in turbulent boundary layer flow based on tomographic PIV[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2):59-66. http://www.syltlx.com/CN/abstract/abstract10918.shtml
    [14] He G S, Pan C, Wang J J. Dynamics of vortical structures in cylinder/wall interaction with moderate gap ratio[J]. Journal of Fluids and Structures, 2013, 43(7):100-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4e70e10fc61e6a603857d4ace00027ac
    [15] Pan C, Wang H, Wang J. Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate[J]. Measurement Science and Technology, 2013, 24(5):055305. doi: 10.1088/0957-0233/24/5/055305
    [16] Pan C, Xue D, Xu Y, et al. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(10):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-eg201510008
    [17] Xu Y, Wang J J. Flow structure evolution for laminar vortex rings impinging onto a fixed solid wall[J]. Experimental Thermal and Fluid Science, 2016, 75:211-219. doi: 10.1016/j.expthermflusci.2016.02.010
    [18] Igarashi H, Durbin P A, Ma H, et al. A stereoscopic PIV study of a near-field wingtip vortex[R]. AIAA-2010-1029, 2010.
    [19] Saffman P G. Vortex dynamics[M]. Cambridge:Cambridge University Press, 1992.
    [20] Heyes A, Smith D. Spatial perturbation of a wing-tip vortex using pulsed span-wise jets[J]. Experiments in Fluids, 2004, 37(1):120-127. doi: 10.1007/s00348-004-0791-5
    [21] 黄烁桥, 申功炘, Robert K, 等.喷流对飞机尾流涡影响的试验研究[J].航空学报, 2010, 31(5):899-908. http://d.old.wanfangdata.com.cn/Periodical/hkxb201005004

    Huang S Q, Shen G X, Robert K, et al. Experimental investigation of influence of jets on aircraft wake vortices[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5):899-908. http://d.old.wanfangdata.com.cn/Periodical/hkxb201005004
  • 加载中
图(9)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  96
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-05
  • 修回日期:  2018-11-10
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日