留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超疏水表面对湍流边界层相干结构影响的TRPIV实验研究

刘铁峰 王鑫蔚 唐湛棋 姜楠

刘铁峰, 王鑫蔚, 唐湛棋, 等. 超疏水表面对湍流边界层相干结构影响的TRPIV实验研究[J]. 实验流体力学, 2019, 33(3): 90-96. doi: 10.11729/syltlx20180101
引用本文: 刘铁峰, 王鑫蔚, 唐湛棋, 等. 超疏水表面对湍流边界层相干结构影响的TRPIV实验研究[J]. 实验流体力学, 2019, 33(3): 90-96. doi: 10.11729/syltlx20180101
Liu Tiefeng, Wang Xinwei, Tang Zhanqi, et al. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90-96. doi: 10.11729/syltlx20180101
Citation: Liu Tiefeng, Wang Xinwei, Tang Zhanqi, et al. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90-96. doi: 10.11729/syltlx20180101

超疏水表面对湍流边界层相干结构影响的TRPIV实验研究

doi: 10.11729/syltlx20180101
基金项目: 

国家自然科学基金项目 11732010

国家自然科学基金项目 11572221

国家自然科学基金项目 11872272

国家自然科学基金项目 U1633109

国家自然科学基金项目 11802195

国家重点研发计划项目 2018YFC0705300

详细信息
    作者简介:

    刘铁峰(1994-), 男, 辽宁锦州人, 硕士研究生.研究方向:实验流体力学.通信地址:天津市天津大学北洋园校区流体力学实验室(300354).E-mail:2285214204@qq.com

    通讯作者:

    姜楠, E-mail: nanj@tju.edu.cn

  • 中图分类号: O357.5;O357.4

TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer

  • 摘要: 湍流边界层中的相干结构是壁面摩擦阻力的主要来源。通过研究超疏水壁面对相干结构的影响,揭示其减阻机理。利用高时间分辨率粒子图像测速技术(TRPIV),分别对流速为0.165m/s的亲水壁面和超疏水壁面平板湍流边界层进行测量,得到了2种壁面瞬时速度矢量场的大样本时间序列。通过对比分析2种壁面的平均速度剖面和湍流度,得到了5.39%的减阻效果。通过二维空间两点相关函数的方法定义并提取相干结构,对比得到超疏水壁面能够有效减小相干结构流向尺度的结论。进一步采用λci准则对发卡涡头进行识别,并以此为条件事件对其周围的脉动速度分布情况进行线性随机估计。结果表明:超疏水壁面能够有效削弱单个发卡涡头的强度,并且能够影响其周围发卡涡包结构的组织形式,整体减弱涡包下方近壁区低速流体质点的流向脉动,从而有效减小壁面摩擦阻力。
  • 图  1  实验装置示意图

    Figure  1.  Experimental facility diagram

    图  2  平均速度剖面

    Figure  2.  Comparison of mean velocity profile

    图  3  湍流度流法向分量剖面

    Figure  3.  Comparison of turbulence intensity

    图  4  空间两点相关系数计算结果

    Figure  4.  The results of two points correlation coefficient

    图  5  相干结构的流向尺度

    Figure  5.  The streamwise scales of coherent structure

    图  6  线性随机估计结果

    Figure  6.  The results of linear stochastic estimation

    表  1  基本湍流减阻参数

    Table  1.   Basic turbulent drag reduction parameters

    Parameters Hydrophilic surfaces Superhydrophobic surfaces
    uτ/(m·s-1) 0.008192 0.007968
    Reτ 627 631
    τω/(kg·m-1·s-2) 0.066975 0.063362
    Cf 0.005099 0.004574
    η 5.39%
    下载: 导出CSV
  • [1] Bhushan B, Jung Y C, Koch K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2009, 367(1894):1631-1672. doi: 10.1098/rsta.2009.0014
    [2] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1):1-8. doi: 10.1007/s004250050096
    [3] 高雪峰, 江雷.天然超疏水生物表面研究的新进展[J].物理, 2006, 35(7):559-564. doi: 10.3321/j.issn:0379-4148.2006.07.008

    Gao X F, Jiang L. Recent studies of natural superhydophobic bio-surfaces[J]. Physics, 2006, 35(7):559-564. doi: 10.3321/j.issn:0379-4148.2006.07.008
    [4] Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6):667-677. doi: 10.1006/anbo.1997.0400
    [5] 王庆军, 陈庆民.超疏水表面的制备技术及其应用[J].高分子材料科学与工程, 2005, 21(2):6-10. doi: 10.3321/j.issn:1000-7555.2005.02.002

    Wang Q J, Chen Q M. Recent Research advances in manufacturing super hydrophobic membrane and applications[J]. Polymer Materials Science and Engineering, 2005, 21(2):6-10. doi: 10.3321/j.issn:1000-7555.2005.02.002
    [6] 李杰, 张会臣.超疏水表面制备技术的研究进展[J].润滑与密封, 2011, 36(1):107-111. doi: 10.3969/j.issn.0254-0150.2011.01.028

    Li J, Zhang H C. Research progress in superhydrophobic surface preparation technology[J]. Lubrication Engineering, 2011, 36(1):107-111. doi: 10.3969/j.issn.0254-0150.2011.01.028
    [7] 余斌, 吴学忠, 肖定邦.仿生超疏水表面技术及其军事应用[J].国防科技, 2015, 36(5):42-45. http://d.old.wanfangdata.com.cn/Periodical/gfkj201505009

    Yu B, Wu X Z, Xiao D B. The bionic superhydrophobic surface technology and its military application[J]. National Defense Science and Technology, 2015, 36(5):42-45. http://d.old.wanfangdata.com.cn/Periodical/gfkj201505009
    [8] Daniello R J, Waterhouse N E. Rothstein J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2009, 21(8):085103. doi: 10.1063/1.3207885
    [9] Min T, Kim J. Effects of hydrophobic surface on skin-friction drag[J]. Physics of Fluids, 2004, 16(7):L55-L58. doi: 10.1063/1.1755723
    [10] Park H, Park H, Kim J. A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow[J]. Physics of Fluids, 2013, 25(11):110815. doi: 10.1063/1.4819144
    [11] Bidkar R A, Leblanc L, Kulkarni A J, et al. Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces[J]. Physics of Fluids, 2014, 26(8):085108. doi: 10.1063/1.4892902
    [12] Busse A, Sandham N D. Influence of an anisotropic slip-length boundary condition on turbulent channel flow[J]. Physics of Fluids, 2012, 24(5):055111. doi: 10.1063/1.4719780
    [13] Park H, Sun G Y, Kim C J. Superhydrophobic turbulent drag reduction as a function of surface grating parameters[J]. Journal of Fluid Mechanics, 2014, 747:722-734. doi: 10.1017/jfm.2014.151
    [14] 宋保维, 任峰, 胡海豹, 等.表面张力对超疏水微结构表面减阻的影响[J].物理学报, 2014, 63(5):054708.

    Song B W, Ren F, Hu H B, et al. Drag reduction on micro-structured hydrophobic surfaces due to surface tension effect[J]. Acta Physica Sinica, 2014, 63(5):054708.
    [15] 吕鹏宇, 薛亚辉, 段慧玲.超疏水材料表面液-气界面的稳定性及演化规律[J].力学进展, 2016, 46(1):179-225. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601004

    Lyu P Y, Xue Y H, Duan H L. Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces[J]. Advance in Mechanics, 2016, 46(1):179-225. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601004
    [16] Tian H P, Zhang J X, Jiang N, et al. Effect of hierarchical structured superhydrophobic surfaces on coherent structures in turbulent channel flow[J]. Experimental Thermal and Fluid Science, 2015, 69:27-37. doi: 10.1016/j.expthermflusci.2015.07.018
    [17] Tian H P, Zhang J X, Wang E D, et al. Experimental investigation on drag reduction in turbulent boundary layer over superhydrophobic surface by TRPIV[J]. Theoretical and Applied Mechanics Letters, 2015, 5(1):45-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxkb-e201501011
    [18] 王二丹, 田海平, 张静娴, 等.超疏水壁面湍流边界层减阻机理的TRPIV实验[J].航空动力学报, 2016, 31(12):2870-2877. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201612008

    Wang E D, Tian H P, Zhang J X, et al. TRPIV experimental investigation of drag-reduction mechanism in turbulent boundary layer over superhydrophobic surfaces[J]. Journal of Aerospace Power, 2016, 31(12):2870-2877. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201612008
    [19] 苏健, 田海平, 姜楠.逆向涡对超疏水壁面减阻影响的TRPIV实验研究[J].力学学报, 2016, 48(5):1033-1039. http://d.old.wanfangdata.com.cn/Periodical/lxxb201605002

    Su J, Tian H P, Jiang N. TRPIV experimental investigation of the effect of retrograde vortex on drag-reduction mechanism over superhydrophobic surfaces[J]. Chinese Journal of Theore-tical and Applied Mechanics, 2016, 48(5):1033-1039. http://d.old.wanfangdata.com.cn/Periodical/lxxb201605002
    [20] Robinson S K. Coherent motions in the turbulent boundary layer[J]. Annual review of Fluid Mechanics, 1991, 23:601-639. doi: 10.1146/annurev.fl.23.010191.003125
    [21] Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387:353-396. doi: 10.1017/S002211209900467X
    [22] Adrian R J, Meinhart C D, Tomkins C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422:1-54. doi: 10.1017/S0022112000001580
    [23] Adrian R J. Hairpin vortex organization in wall turbulence[J]. Physics of Fluids, 2007, 19(4):041301. doi: 10.1063/1.2717527
    [24] Kang Y D, Choi K S, Chun H H. Direct intervention of hairpin structures for turbulent boundary-layer control[J]. Physics of Fluids, 2008, 20(10):101517. doi: 10.1063/1.3006346
    [25] Kim K, Adrian R J, Balachandar S, et al. Dynamics of hairpin vortices and polymer-induced turbulent drag reduction[J]. Physical Review Letters, 2008, 100(13):134504. doi: 10.1103/PhysRevLett.100.134504
    [26] 许春晓.壁湍流相干结构和减阻控制机理[J].力学进展, 2015, 45(1):201504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201501004

    Xu C X. Coherent structure and drag-reduction mechanism in wall turbulence[J]. Advance in Mechanics, 2015, 45(1):201504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201501004
    [27] 卢思, 姚朝晖, 郝鹏飞, 等.具有微纳结构超疏水表面的槽道减阻特性研究[J].中国科学:物理学力学天文学, 2010, 40(7):916-942. http://d.old.wanfangdata.com.cn/Conference/7373351
    [28] 卢思, 姚朝晖, 郝鹏飞, 等.微纳米超疏水表面的制作与特性研究[C]//中国力学大会2011暨钱学森诞辰100周年纪念大会论文集. 2011.
    [29] 樊星, 姜楠.用平均速度剖面法测量壁湍流摩擦阻力[J].力学与实践, 2005, 27(1):28-30. doi: 10.3969/j.issn.1000-0879.2005.01.007

    Fan X, Jiang N. Skin friction measurement in turbulent boundary layer by mean velocity profile method[J]. Mechanics in Engineering, 2005, 27(1):28-30. doi: 10.3969/j.issn.1000-0879.2005.01.007
    [30] Ganapathisubramani B, Hutchins N, Hambleton W T, et al. Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations[J]. Journal of Fluid Mechanics, 2005, 524:57-80. doi: 10.1017/S0022112004002277
    [31] Adrian R J, Moin P, Moser R D. Stochastic estimation of conditional eddies in turbulent channel flow[C]//Proc of the Studying Turbulence Using Numerical Simulation Databases. 1987.
    [32] Adrian R J. Stochasticestimation of conditional structure:a review[J]. Applied Scientific Research, 1994, 53(3-4):291-303. doi: 10.1007/BF00849106
    [33] Christensen K T, Adrian R J. Statistical evidence of hairpin vortex packets in wall turbulence[J]. Journal of Fluid Mechanics, 2001, 431:433-443. doi: 10.1017/S0022112001003512
    [34] Chakraborty P, Balachandar S, Adrian R J. On the relationships between local vortex identification schemes[J]. Journal of Fluid Mechanics, 2005, 535:189-214. doi: 10.1017/S0022112005004726
    [35] Chong M S, Perry A E, Cantwell B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A:Fluid Dynamics, 1990, 2(5):765-777. doi: 10.1063/1.857730
    [36] 王鑫, 李山, 唐湛棋, 等.沟槽对湍流边界层中展向涡影响的实验研究[J].实验流体力学, 2018, 32(1):55-63. http://www.syltlx.com/CN/abstract/abstract11080.shtml

    Wang X, Li S, Tang Z Q, et al. An experimental study on riblet-induced spanwise vortices in turbulent boundary layers[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1):55-63. http://www.syltlx.com/CN/abstract/abstract11080.shtml
    [37] Tang Z Q, Wu Y H, Jia Y X, et al. PIV measurements of a turbulent boundary layer perturbed by a wall-mounted transverse circular cylinder element[J]. Flow, Turbulence and Combustion, 2018, 100(2):365-389. doi: 10.1007/s10494-017-9852-8
    [38] Deng S C, Pan C, Wang J J, et al. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Journal of Fluid Mechanics, 2018, 844:635-668. doi: 10.1017/jfm.2018.160
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  132
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-31
  • 修回日期:  2018-09-26
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日