留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时间解析PIV的串列水力转轮尾流特性研究

季言广 康灿 张永超

季言广, 康灿, 张永超. 基于时间解析PIV的串列水力转轮尾流特性研究[J]. 实验流体力学, 2019, 33(3): 97-105. doi: 10.11729/syltlx20180092
引用本文: 季言广, 康灿, 张永超. 基于时间解析PIV的串列水力转轮尾流特性研究[J]. 实验流体力学, 2019, 33(3): 97-105. doi: 10.11729/syltlx20180092
Ji Yanguang, Kang Can, Zhang Yongchao. Investigation of wake flow characteristics for tandem hydraulic rotors using time-resolved PIV[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 97-105. doi: 10.11729/syltlx20180092
Citation: Ji Yanguang, Kang Can, Zhang Yongchao. Investigation of wake flow characteristics for tandem hydraulic rotors using time-resolved PIV[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 97-105. doi: 10.11729/syltlx20180092

基于时间解析PIV的串列水力转轮尾流特性研究

doi: 10.11729/syltlx20180092
基金项目: 

江苏省六大人才高峰(A类)项目 ZBZZ-18

详细信息
    作者简介:

    季言广(1994-), 男, 山东滕州人, 硕士研究生.研究方向:流体机械及工程中的复杂流动.通信地址:江苏省镇江市京口区学府路301号江苏大学能源与动力工程学院(212013).E-mail:jiyanguang1994@163.com

    通讯作者:

    康灿, E-mail: kangcan@ujs.edu.cn

  • 中图分类号: TK737

Investigation of wake flow characteristics for tandem hydraulic rotors using time-resolved PIV

  • 摘要: 为研究串列水力转轮组合的下游转轮对上游转轮尾流的影响,采用时间解析PIV系统对2个垂直轴Bach水力转轮之间的流动进行测量。在不同来流速度条件下,研究下游转轮的安放角对上游水力转轮尾流的影响,对比分析受到水力转轮边界影响的尾流特征。研究结果表明:来流速度增大时,速度恢复区向上游转轮延伸,当下游转轮安放角小于108°时,该区域的速度随安放角增大而减小;当下游转轮安放角大于108°时,速度变化趋势相反。尾流中的旋涡涡心位置随安放角不同上下偏移,在部分安放角下,旋涡被拉伸变得扁平,流线也因此呈现出与无下游转轮时不同的非水平偏转状态;高能涡量区域在部分安放角和来流速度增大时,逐渐向下游和尾流中心发展,流场中离散的小尺度涡不断增加;尾流中的大尺度涡结构包含于前3阶的POD模态中,而高阶POD模态主要表征小尺度的流动结构。
  • 图  1  Bach转轮模型实物图

    Figure  1.  Bach rotor

    图  2  实验装置

    Figure  2.  Experimental rig

    图  3  拍摄区域示意图

    Figure  3.  Schematic diagram of the monitored area

    图  4  不同下游转轮安放角时的上游转轮尾流形态及速度分布

    Figure  4.  Wake patterns and velocity distributions at different setting angles of the downstream rotor

    图  5  两转轮中间位置的竖直方向速度分布

    Figure  5.  Velocity distributions in vertical direction at the middle cross section between the two rotors

    图  6  两转轮中心连线上的速度分布

    Figure  6.  Velocity distributions along the center line between the two rotors

    图  7  上游转轮尾流的形态及速度分布随来流速度的变化

    Figure  7.  Variations of wake pattern and velocity distributions with the upstream velocity for the upstream rotor

    图  8  不同来流速度时两转轮中间位置竖直方向上的速度分布

    Figure  8.  Velocity distributions in vertical direction at the middle cross section between the two rotors at different upstream flow velocities

    图  9  不同来流速度时两转轮中心连线上的速度分布

    Figure  9.  Velocity distributions along the center line of the two rotors at different upstream flow velocities

    图  10  不同下游转轮安放角对应的涡量分布(Re=1.6×105)

    Figure  10.  Variations of the vorticity distribution with the different setting angles of the downstream rotor (Re=1.6×105)

    图  11  涡量分布随来流速度的变化

    Figure  11.  Variations of the vorticity distribution with the upstream flow velocity

    图  12  POD模态结构及能量分布(Re=0.8×105)

    Figure  12.  Flow structures and energy distribution at different POD modes (Re=0.8×105)

    图  13  POD模态结构及能量分布(Re=1.6×105)

    Figure  13.  Flow structures and energy distribution at different POD modes (Re=1.6×105)

  • [1] 王蔚峰, 康灿, 杨敏官.新型垂直轴螺旋型风力叶轮的研究[J].太阳能学报, 2013, 34(8):1421-1426. doi: 10.3969/j.issn.0254-0096.2013.08.020

    Wang W F, Kang C, Yang M G. Research of a novel spiral vertical-axis wind turbine rotor[J]. Acta Energiae Solaris Sinica, 2013, 34(8):1421-1426. doi: 10.3969/j.issn.0254-0096.2013.08.020
    [2] Kacprzak K, Liskiewicz G, Sobczak K. Numerical investigation of conventional and modified Savonius wind turbines[J]. Renewable Energy, 2013, 60(4):578-585. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=588f9b8b7e7eaf460f99452541ab863a
    [3] Jaohindy P, Ennamiri H, Garde F. Numerical investigation of airflow through a Savonius rotor[J]. Wind Energy, 2014, 17(6):853-868. doi: 10.1002/we.v17.6
    [4] Nasef M H, El-Askary W A, AbdEl-Hamid A A, et al. Evaluation of savonius rotor performance:static and dynamic studies[J]. Journal of Wind Engineering and Industrial Aerody-namics, 2013, 123(Part A):1-11. https://www.sciencedirect.com/science/article/pii/S0167610513001979#!
    [5] Zhang B S, Song B W, Mao Z Y, et al. A novel parametric modeling method and optimal design for Savonius wind turbines[J]. Energies, 2017, 10(3):1-20. https://www.mdpi.com/1996-1073/10/3/301/htm
    [6] Kang C, Yang X, Wang Y L. Turbulent flow characteristics and dynamics response of a vertical-axis spiral rotor[J]. Energies, 2013, 6(6):2741-2758. doi: 10.3390/en6062741
    [7] Kumar A, Saini R P. Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades[J]. Renewable Energy, 2017, 113:461-478. doi: 10.1016/j.renene.2017.06.020
    [8] Fujisawa N, Gotoh F. Visualization study of the flow in and around aSavonius rotor[J]. Experiments in Fluids, 1992, 12(6):407-412. doi: 10.1007/BF00193888
    [9] Torresi M, de Benedittis F A, Fortunato B, et al. Performance and flow field evaluation of a Savonius rotor tested in a wind tunnel[J]. Energy Procedia, 2014, 45:207-216. doi: 10.1016/j.egypro.2014.01.023
    [10] Sarma N K, Biswas A, Misra R D. Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power[J]. Energy Conversion and Manage-ment, 2014, 83:88-98. doi: 10.1016/j.enconman.2014.03.070
    [11] Gao X X, Yang H X, Lu L. Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model[J]. Applied Energy, 2016, 174:192-200. doi: 10.1016/j.apenergy.2016.04.098
    [12] Park J, Law K H. Layout optimization for maximizing wind farm power production using sequential convex programming[J]. Applied Energy, 2015, 151:320-334. doi: 10.1016/j.apenergy.2015.03.139
    [13] Zhang B S, Song B W, Mao Z Y, et al. A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines[J]. Energy, 2017, 121:341-335. doi: 10.1016/j.energy.2017.01.004
    [14] Zuo W, Wang X D, Kang S. Numerical simulations on the wake effect of H-type vertical axis wind turbines[J]. Energy, 2016, 106:691-700. doi: 10.1016/j.energy.2016.02.127
    [15] Lam H F, Peng H Y. Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations[J]. Renewable Energy, 2016, 90:386-398. doi: 10.1016/j.renene.2016.01.011
    [16] Shaheen M, El-Sayed M, Abdallah S. Numerical study of two-bucket Savonius wind turbine cluster[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 137:78-89. doi: 10.1016/j.jweia.2014.12.002
    [17] Shigetomi A, Murai Y, Tasaka Y, et al. Interactive flow field around two Savonius turbines[J]. Renewable Energy, 2011, 36(2):536-545. doi: 10.1016/j.renene.2010.06.036
    [18] 孙科, 李岩, 王凯, 等.串列竖轴水轮机尾流场影响CFD模拟分析[J].哈尔滨工业大学学报, 2018, 50(5):185-191. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201805025

    Sun K, Li Y, Wang K, et al. CFD simulation analysis on the wake effect of tandem vertical axis tidal turbines[J]. Journal of Harbin Institute of Technology, 2018, 50(5):185-191. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201805025
    [19] Ahmadi-Baloutaki M, Carriveau R, Ting D S-K, et al. A wind tunnel study on the aerodynamic interaction of vertical axis wind turbines in array configurations[J]. Renewable Energy, 2016, 96(Part A):904-913. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=07f00a74e07a4512cd9756132087fb47
    [20] 杨瑞, 张志勇, 王强, 等.串列风力机三维尾流场的实验研究[J].兰州理工大学学报, 2017, 43(5):60-64. doi: 10.3969/j.issn.1673-5196.2017.05.011

    Yang R, Zhang Z Y, Wang Q, et al. Experimental study of three-dimensional wake of tandem windturbines[J]. Journal of Lanzhou University of Technology, 2017, 43(5):60-64. doi: 10.3969/j.issn.1673-5196.2017.05.011
    [21] 郭峰山, 贾明, 林伟豪, 等.竖轴潮流能水轮机群数值模拟研究[J].太阳能学报, 2014, 35(9):1810-1815. doi: 10.3969/j.issn.0254-0096.2014.09.039

    Guo F S, Jia M, Lin W H, et al. Numerical investigation of vertical tidal turbine arrays[J]. Acta Energiae Solaris Sinica, 2014, 35(9):1810-1815. doi: 10.3969/j.issn.0254-0096.2014.09.039
    [22] 王勇, 郝南松, 耿子海, 等.基于时间解析PIV的圆柱绕流尾迹特性研究[J].实验流体力学, 2018, 32(1):64-70. http://www.syltlx.com/CN/abstract/abstract11081.shtml

    Wang Y, Hao N S, Geng Z H, et al. Measurements of circular cylinder's wake using time-resolved PIV[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1):64-70. http://www.syltlx.com/CN/abstract/abstract11081.shtml
    [23] Zhou T, Rempfer D. Numerical study of detailed flow field and performance of Savonius wind turbines[J]. Renewable Energy, 2013, 51(2):373-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7e5aa1225d9a37b666bdd34d84e9a27e
    [24] Hassanzadeh A R, Yaakob O B, Ahmed Y M, et al. Numerical simulation for unsteady flow over marine current turbine rotors[J]. Wind and Structures, 2016, 23(4):301-311. doi: 10.12989/was.2016.23.4.301
    [25] 谢龙, 靳思宇, 王玉璋, 等.阀体后90°圆形弯管内部流场PIV测量及POD分析[J].实验流体力学, 2012, 26(3):21-25, 31. doi: 10.3969/j.issn.1672-9897.2012.03.004

    Xie L, Jin S Y, Wang Y Z, et al. PIV measurement and POD analysis of inner flow flied in 90° bending duct of circular-section with fore-end valve[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3):21-25, 31. doi: 10.3969/j.issn.1672-9897.2012.03.004
  • 加载中
图(13)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  119
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-26
  • 修回日期:  2018-10-09
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日