留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴撞击柔性材料表面铺展特性的实验研究

杨磊 杨向龙 王甫军

杨磊, 杨向龙, 王甫军. 液滴撞击柔性材料表面铺展特性的实验研究[J]. 实验流体力学, 2019, 33(3): 83-89. doi: 10.11729/syltlx20180086
引用本文: 杨磊, 杨向龙, 王甫军. 液滴撞击柔性材料表面铺展特性的实验研究[J]. 实验流体力学, 2019, 33(3): 83-89. doi: 10.11729/syltlx20180086
Yang Lei, Yang Xianglong, Wang Fujun. On the maximum spreading of liquid droplets impacting on soft surfaces[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 83-89. doi: 10.11729/syltlx20180086
Citation: Yang Lei, Yang Xianglong, Wang Fujun. On the maximum spreading of liquid droplets impacting on soft surfaces[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 83-89. doi: 10.11729/syltlx20180086

液滴撞击柔性材料表面铺展特性的实验研究

doi: 10.11729/syltlx20180086
基金项目: 

国家自然科学基金资助项目 11102116

深圳市科技计划资助项目 GJHS20120621155355526

详细信息
    作者简介:

    杨磊(1978-), 男, 安徽合肥人, 副教授.研究方向:实验流体力学、多相流.通信地址:广东省深圳市深圳大学土木与交通工程学院A519(518060).E-mail:yanglei@szu.edu.cn

    通讯作者:

    杨向龙, E-mail: xlyang@szu.edu.cn

  • 中图分类号: O369

On the maximum spreading of liquid droplets impacting on soft surfaces

  • 摘要: 采用高速摄影与计算机图像识别技术,研究了单个液滴撞击不同厚度、不同弹性模量的聚二甲基硅氧烷(PDMS)样品表面后的动态铺展过程,获得了液滴与柔性材料表面的移动接触线直径随时间的变化规律。实验结果表明:柔性材料在撞击过程中受压变形所导致的固体材料粘性能量耗散与系统的总能量相比很小,不会对液滴的铺展过程产生明显影响;在较低的撞击速度下,柔性材料表面形成的润湿脊所导致的粘弹性能量耗散是系统能量耗散的重要因素,且随着柔性材料弹性模量的减小而增大,因此液滴撞击弹性模量较小的PDMS表面时的最大铺展系数相对较小;当撞击速度增大后,粘弹性能量耗散在总能量耗散中所占的比例降低,液滴铺展过程中的液体粘性能量耗散所占比例逐渐升高,柔性材料弹性模量对液滴铺展行为的影响逐渐降低。
  • 图  1  实验装置示意图

    Figure  1.  Sketch of the experimental setup

    图  2  高速摄影照片(Ratio=10:1, v0=0.623m/s)

    Figure  2.  Photos of impact procedure (Ratio=10:1, v0=0.623m/s)

    图  3  不同实验条件下的液滴铺展系数

    Figure  3.  Spread factor of liquid droplet

    图  4  液滴撞击不同材料表面的最大铺展系数

    Figure  4.  Spread factor of liquid droplet

    图  5  初始总能量与最大铺展总能量的比较

    Figure  5.  Comparison of Etotal and E'total

    表  1  PDMS样品的主要参数

    Table  1.   Parameters of PDMS substrates

    No. Ratio b/mm G/kPa
    1 10:1 0.03 710
    2 10:1 0.09 710
    3 10:1 0.30 710
    4 10:1 1.00 710
    5 10:1 3.60 710
    6 40:1 0.03 36
    7 40:1 0.09 36
    8 40:1 0.30 36
    9 40:1 1.00 36
    10 40:1 3.60 36
    下载: 导出CSV

    表  2  3种不同表面的接触角

    Table  2.   Summary of different contact angles

    Surfaces θe θa θr
    PDMS 10:1 120°±2° 116°±2° 88°±2°
    PDMS 40:1 125°±3° 123°±2° 24°±2°
    Silicon 80°±2° 92°±2° 74°±2°
    下载: 导出CSV

    表  3  实验所用液滴参数

    Table  3.   Parameters of liquid droplets in the study

    D0/mm H/mm v0/(m·s-1) Re We
    2.36±0.07 6 0.216±0.006 481±18.0 1.52±0.09
    12 0.409±0.002 899±14.5 5.39±0.10
    25 0.623±0.007 1429±26.3 13.05±0.36
    50 0.881±0.007 1954±29.2 25.23±0.52
    100 1.311±0.018 2882±56.4 55.38±1.63
    200 1.864±0.009 4099±43.1 111.96±1.52
    400 2.602±0.017 6017±90.4 229.44±3.99
    800 3.544±0.057 7995±210.0 415.18±20.90
    1600 4.743±0.142 10 520±301.0 731.12±48.70
    下载: 导出CSV

    表  4  粘弹性能量耗散、初始总能量及其比值

    Table  4.   Ev, Etotal and the ratio of Ev to Etotal

    We PDMS 10:1 PDMS 40:1
    Etotal Ev Ψ Etotal Ev Ψ
    1.5 1.43×10-6 3.78×10-8 2.64% 1.43×10-6 4.94×10-7 34.5%
    5.4 1.86×10-6 4.74×10-8 2.55% 1.85×10-6 6.16×10-7 33.3%
    13.1 2.61×10-6 7.16×10-8 2.74% 2.61×10-6 9.31×10-7 35.7%
    25.2 3.93×10-6 9.19×10-8 2.34% 3.94×10-6 1.19×10-6 30.3%
    55.4 7.18×10-6 1.45×10-7 2.02% 7.20×10-6 1.89×10-6 26.2%
    112.0 1.31×10-5 2.46×10-7 1.87% 1.32×10-5 3.20×10-6 24.2%
    229.0 2.55×10-5 3.82×10-7 1.50% 2.51×10-5 4.97×10-6 19.8%
    415.0 4.69×10-5 4.81×10-7 1.03% 4.72×10-5 6.26×10-6 13.3%
    731.0 7.34×10-5 5.61×10-7 0.76% 7.48×10-5 7.29×10-6 9.74%
    下载: 导出CSV
  • [1] van Dam D B, Le Clerc C. Experimental study of the impact of an ink-jet printed droplet on a solid substrate[J]. Physics of Fluids, 2004, 16(9):3403-3414. doi: 10.1063/1.1773551
    [2] Gavaises M, Theodorakakos A, Bergeles G. Modeling wall impaction of diesel sprays[J]. International Journal of Heat and Fluid Flow, 1996, 17(2):130-138. doi: 10.1016/0142-727X(95)00097-A
    [3] Sampath S, Jiang X. Splat formation and microstructure development during plasma spraying:deposition temperature effects[J]. Materials Science and Engineering:A, 2001, 304-306:144-150. doi: 10.1016/S0921-5093(00)01464-7
    [4] 张洪, 张文倩, 郑英.过冷大水滴结冰探测技术研究进展[J].实验流体力学, 2016, 30(3):33-39. http://www.syltlx.com/CN/abstract/abstract10931.shtml

    Zhang H, Zhang W Q, Zheng Y. Research progress on supercooled large droplet icing detection technology[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3):33-39. http://www.syltlx.com/CN/abstract/abstract10931.shtml
    [5] 叶学民, 李永康, 李春曦.受热基底上的液滴铺展及换热特性[J].物理学报, 2016, 65(23):234701. doi: 10.7498/aps.65.234701

    Ye X M, Li Y K, Li C X. Spreading and heat transfer characteristics of droplet on a heated substrate[J]. Acta Physica Sinica, 2016, 65(23):234701. doi: 10.7498/aps.65.234701
    [6] 贾卫东, 朱和平, 董祥, 等.喷雾液滴撞击大豆叶片表面研究[J].农业机械学报, 2013, 44(12):87-94, 113. doi: 10.6041/j.issn.1000-1298.2013.12.015

    Jia W D, Zhu H P, Dong X, et al. Impact of spray droplet on soybean leaf surface[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12):87-94, 113. doi: 10.6041/j.issn.1000-1298.2013.12.015
    [7] Joung Y S, Buie C R. Aerosol generation by raindrop impact on soil[J]. Nature Communications, 2015, 6:6083. doi: 10.1038/ncomms7083
    [8] Liu Y Q, Sun N, Liu J W, et al. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops[J]. ACS Nano, 2018, 12(3):2893-2899. doi: 10.1021/acsnano.8b00416
    [9] Beemer D L, Wang W, Kota A K. Durable gels with ultra-low adhesion to ice[J]. Journal of Materials Chemistry A, 2016, 4(47):18253-18258. doi: 10.1039/C6TA07262C
    [10] Cao X, Yang J, Wang N, et al. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science[J]. Advanced Energy Materials, 2016, 6(23):1600665. doi: 10.1002/aenm.201600665
    [11] Bennett T, Poulikakos D. Splat-quench solidification:estimating the maximum spreading of a droplet impacting a solid surface[J]. Journal of Materials Science, 1993, 28(4):963-970. doi: 10.1007/BF00400880
    [12] Hung Y L, Wang M J, Liao Y C, et al. Initial wetting velocity of droplet impact and spreading:Water on glass and parafilm[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 384(1-3):172-179. https://www.sciencedirect.com/science/article/pii/S0927775711002354#!
    [13] 毕菲菲, 郭亚丽, 沈胜强, 等.液滴撞击固体表面铺展特性的实验研究性[J].物理学报, 2012, 61(18):184702. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201218042

    Bi F F, Guo Y L, Shen S Q, et al. Experimental study of spread characteristics of droplet impacting solid surface[J]. Acta Physica Sinica, 2012, 61(18):295-300. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201218042
    [14] Scheller B L, Bousfield D W. Newtonian drop impact with a solid surface[J]. AIChE Journal, 1995, 41(6):1357-1367. doi: 10.1002/(ISSN)1547-5905
    [15] Mao T, Kuhn D C S, Tran H. Spread and rebound of liquid droplets upon impact on flat surfaces[J]. AIChE Journal, 1997, 43(9):2169-2179. doi: 10.1002/(ISSN)1547-5905
    [16] Roisman I V, Rioboo R, Tropea C. Normal impact of a liquid drop on a dry surface:model for spreading and receding[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2002, 458(2022):1411-1430. doi: 10.1098/rspa.2001.0923
    [17] Lee J B, Laan N, de Bruin K G, et al. Universal rescaling of drop impact on smooth and rough surfaces[J]. Journal of Fluid Mechanics, 2016, 786(4):R4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2b7029124f12288da1488593f93338b8
    [18] Huang H M, Chen X P. Energetic analysis of drop's maximum spreading on solid surface with low impact speed[J]. Physics of Fluids, 2018, 30(2):022106. doi: 10.1063/1.5006439
    [19] Shanahan M E R, Carre A. Viscoelastic dissipation in wetting and adhesion phenomena[J]. Langmuir, 1995, 11(4):1396-1402. doi: 10.1021/la00004a055
    [20] Pepper R E, Courbin L, Stone H A. Splashing on elastic membranes:The importance of early-time dynamics[J]. Physics of Fluids, 2008, 20(8):082103. doi: 10.1063/1.2969755
    [21] Rioboo R, Voué M, Adão H, et al. Drop impact on soft surfaces:beyond the static contact angles[J]. Langmuir, 2010, 26(7):4873-4879. doi: 10.1021/la9036953
    [22] Howland C J, Antkowiak A, Castrejon-Pita J R, et al. It's harder to splash on soft solids[J]. Physical Review Letters, 2016, 117(18):184502. doi: 10.1103/PhysRevLett.117.184502
    [23] Carre M, Shanahan M E R. Direct evidence for viscosity-independent spreading on a soft solid[J]. Langmuir, 1995, 11(3):24-26. doi: 10.1021/la00001a007
    [24] Alizadeh A, Bahadur V, Shang W, et al. Influence of substrate elasticity on droplet impact dynamics[J]. Langmuir, 2013, 29(14):4520-4524. doi: 10.1021/la304767t
    [25] Chen L Q, Auernhammer G K, Bonaccurso E. Short time wetting dynamics on soft surfaces[J]. Soft Matter, 2011, 7(19):9084-9089. doi: 10.1039/c1sm05967j
    [26] Chen L Q, Bonaccurso E, Deng P G, et al. Droplet impact on soft viscoelastic surfaces[J]. Physical Review E, 2016, 94(6):063117. doi: 10.1103/PhysRevE.94.063117
    [27] Chen L Q, Li Z G. Bouncing droplets on nonsuperhydrophobic surfaces[J]. Physical Review E. 2010, 82(1):016308. doi: 10.1103/PhysRevE.82.016308
    [28] Pasandideh-Fard M, Qiao Y M, Chandra S, et al. Capillary effects during droplet impact on a solid surface[J]. Physics of Fluids, 1996, 8(3):650-659. doi: 10.1063/1.868850
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  137
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-14
  • 修回日期:  2018-11-29
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日