留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速气流中的斜爆震研究进展综述

苗世坤 周进 刘彧 刘世杰 林志勇

苗世坤, 周进, 刘彧, 等. 超声速气流中的斜爆震研究进展综述[J]. 实验流体力学, 2019, 33(1): 41-53. doi: 10.11729/syltlx20180078
引用本文: 苗世坤, 周进, 刘彧, 等. 超声速气流中的斜爆震研究进展综述[J]. 实验流体力学, 2019, 33(1): 41-53. doi: 10.11729/syltlx20180078
Miao Shikun, Zhou Jin, Liu Yu, et al. Review of studies on oblique detonation waves in supersonic flows[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 41-53. doi: 10.11729/syltlx20180078
Citation: Miao Shikun, Zhou Jin, Liu Yu, et al. Review of studies on oblique detonation waves in supersonic flows[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 41-53. doi: 10.11729/syltlx20180078

超声速气流中的斜爆震研究进展综述

doi: 10.11729/syltlx20180078
基金项目: 

国家自然科学基金项目 91441101

国家自然科学基金项目 11702316

详细信息
    作者简介:

    苗世坤(1989-), 男, 江苏徐州人, 博士研究生。研究方向:高超声速推进技术。通信地址:湖南省长沙市开福区德雅路109号湖南省长沙市开福区德雅路109号(410073)。E-mail:miaoshikun@nudt.edu.cn

    通讯作者:

    周进, E-mail:zj706@vip.sina.com

  • 中图分类号: V231.2

Review of studies on oblique detonation waves in supersonic flows

  • 摘要: 对超声速气流中斜爆震波的起爆和驻定特性的研究进展进行总结,重点回顾了斜爆震波起爆准则和驻定条件的实验研究。随后对斜爆震过渡区结构及波面胞格结构的研究历程和发展现状进行了概述。此外,对爆震波与湍流边界层相互作用的研究现状进行概述,分析总结了当前斜爆震研究存在的问题,对后续的斜爆震研究内容和研究手段提出建议。
  • 图  1  斜爆震发动机(a)及飞行器整体(b)结构示意图[30]

    Figure  1.  Schematic view of (a) a supersonic ramjet with oblique detonation wave and (b) an engine integrated into a hypersonic plane[30]

    图  2  高速射弹引起的激波诱导不稳定燃烧阴影图[48]

    Figure  2.  Shadowgraph of shock-induced combustion on supersonic projectile[48]

    图  3  不同工况下高速射弹产生的不同燃烧机制:(a)直接斜爆震波, (b)延迟斜爆震波, (c)、(d)不稳定燃烧机制, (e)波分离机制, (f)惰性激波[67]

    Figure  3.  Different combustion regimes under different conditions: (a) prompt ODW, (b) delayed ODW, (c), (d) combustion instability, (e) wave splitting, (f) inert shock wave[67]

    图  4  理论起爆极限与实验结果的比较[67]

    Figure  4.  Comparison between the theoretical limits and the experimental results[67]

    图  5  斜爆震波的"Straw Hat"结构流场阴影图[72]

    Figure  5.  Shadowgraphs of "Straw Hat" structure of oblique detonation waves[72]

    图  6  不同过渡区结构的斜爆震流场示意图[80]

    Figure  6.  Schematic of ODWs with different transition structures[80]

    图  7  斜激波管中得到的斜爆震波纹影(a)和PLIF图像(b); OSW:斜激波, ODW:斜爆震波, TW:横波, OF:倾斜火焰[104]

    Figure  7.  Schlieren and PLIF images of delayed oblique detonation wave. OSW: oblique shock wave; ODW: oblique detonation wave; TW: transverse wave; OF: oblique flame[104]

    图  8  斜爆震流场中的激波边界层相互作用示意图[140]

    Figure  8.  Schematic of shock/boundary layer interaction in ODW flowfield[140]

    图  9  超声速风洞中在中等边界层分离区尺度下得到的间歇突跃-平滑型的斜爆震波[141]

    Figure  9.  Intermittent abrupt-delayed oblique detonation wave under moderate scales of boundary layer separation in a supersonic wind tunnel[141]

    表  1  爆震燃烧与爆燃燃烧对比[34]

    Table  1.   Comparison between deflagrative combustion and detonative combustion[34]

    爆燃燃烧 爆震燃烧
    1 火焰传播速度为几十米每秒量级,燃烧室尺寸较大 爆震传播速度为千米每秒量级,燃烧区域小,燃烧室尺寸更小
    2 在高当量比条件下燃烧,高温、释放更多NOx,需要在涡轮前提供额外的空气 贫燃燃烧(火箭基富燃),低温。释放较少NOx,不需要提供额外的空气
    3 燃烧波导致压力降低 爆震波后压力急剧升高
    4 设计复杂 设计简单
    下载: 导出CSV
  • [1] Grismer M J, Powers J M. Calculations for steady propagation of a generic ram accelerator configuration[J]. Journal of Propulsion and Power, 1995, 11(1):105-111. doi: 10.2514/3.23846
    [2] Li C, Kailasanath K, Oran E S, et al. Dynamics of oblique detonations in ram accelerators[J]. Shock Waves, 1994, 5(1-2):97-101. http://cn.bing.com/academic/profile?id=a0a91d77389e7adccd312fed6a386a76&encoded=0&v=paper_preview&mkt=zh-cn
    [3] Avrashkov V, Baramovsky S, Levin V. Gasdynamic features of supersonic kerosene combustion in a model combustion chamber[R]. AIAA-90-5268, 1990.
    [4] Powers J M, Stewart D S. Approximate solutions for oblique detonations in the hypersonic limit[J]. AIAA Journal, 1992, 30(3):726-736. doi: 10.2514/3.10978
    [5] Heiman D, Shreeve R P, Eideiman S. Detonation pulse engine[R]. AIAA-86-1683, 1986.
    [6] 范玮, 严传俊, 邓君香, 等.模型两相脉冲爆震发动机推力的测试与研究[J].航空动力学报, 2001, 16(2):185-188. doi: 10.3969/j.issn.1000-8055.2001.02.020

    Fan W, Yan C J, Deng J X, et al. Measurement and investigation on thrust of two-phase pulse detonation engine model[J]. Journal of Aerospace Power, 2001, 16(2):185-188. doi: 10.3969/j.issn.1000-8055.2001.02.020
    [7] 严传俊, 何立明, 范玮, 等.脉冲爆震发动机的研究与发展[J].航空动力学报, 2001, 16(3):212-217. doi: 10.3969/j.issn.1000-8055.2001.03.004

    Yan C J, He L M, Fan W, et al. Research and development of pulse detonation engines[J]. Journal of Aerospace Power, 2001, 16(3):212-217. doi: 10.3969/j.issn.1000-8055.2001.03.004
    [8] Heiser W H, Pratt D T. Thermodynamic cycle analysis of pulse detonation engines[J]. Journal of Propulsion and Power, 2002, 18(1):68-76. doi: 10.2514/2.5899
    [9] Lee S Y, Jonathan W, Silvano S, et al. Deflagration to detonation transition processes by turbulence generating obstacles in pulse detonation engines[J]. Journal of Propulsion and Power, 2004, 20(6):1026-1036. doi: 10.2514/1.11042
    [10] Ma F, Choi J Y, Vigor Y. Thrust chamber dynamics and propulsive performance of single-tube pulse detonation engines[J]. Journal of Propulsion and Power, 2005, 21(3):512-526. doi: 10.2514/1.7393
    [11] Harris P G. Pulse detonation engine as a ramjet replacement[J]. Journal of Propulsion and Power, 2006, 22(2):462-473. doi: 10.2514/1.15414
    [12] Nikitin V F, Dushin V R, Phylippov Y G, et al. Pulse detonation engines:technical approaches[J]. Acta Astronautica, 2009, 64:281-287. doi: 10.1016/j.actaastro.2008.08.002
    [13] Phylippov Y G, Dushin V R, Nikitin V F, et al. Fluid mechanics of pulse detonation thrusters[J]. Acta Astronautica, 2012, 76:115-126. doi: 10.1016/j.actaastro.2012.02.007
    [14] Alexandrov V G, Kraiko A N, Reent K S. Determination of the integral and local characteristics of supersonic pulsed detonation ramjet engine(SPDRE)[R]. AIAA-2001-1788, 2001.
    [15] Alexandrov V G, Kraiko A N, Reent K S. The determination of characteristics of supersonic pulsed detonation ramjet engine(SPDRE)[J]. Journal of Aeromechanics and Gas Dynamics, 2001, 2:3-15.
    [16] Alexandrov V G, Kraiko A N, Reent K S. Integral and local characteristics of supersonic pulsed detonation ramjet engine(SPDRE)[J]. Journal of Mathematical Modeling, 2003, 15(6):17-26. https://www.researchgate.net/publication/269218958_Determination_of_the_integral_and_local_characteristics_of_supersonic_pulsed_detonation_ramjet_engine_SPDRE
    [17] Nicholls J A, Cullen R E, Raglano K W. Feasibility studies of a rotating detonation wave rocket motor[J]. Journal of Spacecraft, 1966, 3(6):892-898. doi: 10.2514-3.28557/
    [18] Adamson T C, Olsson G R. Performance analysis of a rotating detonation wave engine[J]. Acta Astronautica, 1967, 13(3):405-415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214590607
    [19] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonations[J]. Journal of Propulsion and Power, 2006, 22(6):1204-1216. doi: 10.2514/1.17656
    [20] 邵业涛, 王健平, 唐新猛, 等.连续旋转爆轰发动机流场三维数值模拟[J].航空动力学报, 2010, 25(8):1717-1722. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201008006

    Shao Y T, Wang J P, Tang X M, et al. Three-dimensional numerical simulation of continuous rotating detonation engine flowfields[J]. Journal of Aerospace Power, 2010, 25(8):1717-1722. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201008006
    [21] 张旭东, 范宝春, 归明月, 等.旋转爆轰的三维结构和侧向稀疏波的影响[J].爆炸与冲击, 2010, 30(4):337-341. http://d.old.wanfangdata.com.cn/Periodical/bzycj201004001

    Zhang X D, Fan B C, Gui M Y, et al. Three-dimensional structure of rotating detonation and effect of lateral rare faction waves[J]. Explosion and Shock Waves, 2010, 30(4):337-341. http://d.old.wanfangdata.com.cn/Periodical/bzycj201004001
    [22] 刘世杰.连续旋转爆震波结构、传播模态及自持机理研究[D].长沙: 国防科学技术大学, 2012.

    Liu S J. Investigations on the structure, rotating mode and lasting mechanism of continuous rotating detonation waves[J]. Changsha:National University of Defense Technology, 2012.
    [23] Yi T H, Lou J, Cary T, et al. Propulsive performance of a continuously rotating detonation engine[J]. Journal of Propulsion and Power, 2011, 27(1):171-181. doi: 10.2514/1.46686
    [24] Ostrander M J, Hyde J C, Young M F, et al. Standing oblique detonation wave engine performance[R]. AIAA-1987-2002, 1987.
    [25] Adelman H G, Cambier J L, Menees G P, et al. Analytical and experimental validation of the oblique detonation wave engine concept[R]. AIAA-1988-97, 1988.
    [26] Cambier J L, Adelman H, Menees G P. Numerical simulations of an oblique detonation wave engine[R]. AIAA-1988-63, 1988.
    [27] Cambier J L, Adelman H, Menees G P. Numerical simulations of an oblique detonation wave engine[J]. Journal of Propulsion and Power, 1990, 6(3):315-323. doi: 10.2514/3.25436
    [28] Powers J M. Oblique detonations: theory and propulsion applications[M]//Combustion in High-Speed Flows. Springer Netherlands, 1994.
    [29] Higgins A J. Ram accelerators:outstanding issues and new directions[J]. Journal of Propulsion and Power, 2006, 22(6):1170-1187. doi: 10.2514/1.18209
    [30] Choi J Y. Computational studies on detonations for propulsion in PNU[C]. International Workshop on Detonation for Propulsion. Busan, Korea, 2011.
    [31] Ashford S A, Emanuel G. Oblique detonation wave engine performance prediction[J]. Journal of Propulsion and Power, 1996, 12(2):322-327. doi: 10.2514/3.24031
    [32] Kailasanath K. Review of propulsion applications of detonation waves[J]. AIAA Journal, 2000, 38(9):1698-1708. doi: 10.2514/2.1156
    [33] Valorani M, Digiacinto M, Buongiorno C. Performance prediction for oblique detonation wave engine(ODWE)[J]. Acta Astronautica, 2001, 48(4):221-228.
    [34] Wolański P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158. http://d.old.wanfangdata.com.cn/Periodical/yhxb201801013
    [35] Srulijes J, Smeets G, Seiler F. Expansion tube experiments for the investigation of ram-accelerator-related combustion and gasdynamic problems[R]. AIAA 1992-3246, 1992.
    [36] Morris C I, Kamel M R, Ben-Yakar A, et al. Combined schlieren and OH PLIF imaging study of ram accelerator flowfields[R]. AIAA 1998-0244, 1998.
    [37] Morris C I, Kamel M R, Hansom R K. Shock-induced combustion in high-speed wedge flows[J]. Sympusium on Combustion, 1998, 27(2):2157-2164. doi: 10.1016-S0082-0784(98)80064-7/
    [38] Zeldovich Y B, Leipunsky O. A study of chemical reactions in shock waves[J]. Journal of Experimental and Theoretical Physics, 1943, 18:167-171.
    [39] Behrens H, Struth W, Wecken F. Studies of hypervelocity firings into mixtures of hydrogen with air or with oxygen[J]. Symposium on Combustion, 1965, 10(1):245-252. doi: 10.1016/S0082-0784(65)80169-2
    [40] Ruegg F W, Dorsey W W. A missile technique for the study of detonation waves[J]. Journal of Research of the National Bureau of Standards-C:Engineering and Instrumentation, 1962, 66C:51-58. doi: 10.6028/jres.066C.007
    [41] Kasahara J, Horii T, Endo T, et al. Experimental observation of unsteady H2-O2 combustion phenomena around hypersonic projectiles using a multiframe camera[C]. Symposium on Combustion, 1996, 26(2): 2903-2908.
    [42] Matsuo A, Fujiwara T. Numerical investigation of oscillatory instability in shock-induced combustion around a blunt body[J]. AIAA Journal, 1993, 31(10):1935-1841. http://cn.bing.com/academic/profile?id=573c1c10266805e6bbd9328b14e9d750&encoded=0&v=paper_preview&mkt=zh-cn
    [43] Matsuo A, Fujii K. Computational study of large-disturbance oscillations in unsteady supersonic combustion around projectiles[J]. AIAA Journal, 1995, 33(10):1928-1835. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2cc52c1d9b099a819077ffe2a807e299
    [44] Matsuo A, Fujii K. Flow features of shock-induced combustion around projectile traveling at hypervelocities[J]. AIAA Journal, 1995, 33(6):1056-1063. doi: 10.2514/3.12527
    [45] Matsuo A, Fujii K. Detailed mechanism of the unsteady combustion around hypersonic projectiles[J]. AIAA Journal, 1996, 34(10):2082-2089. doi: 10.2514/3.13355
    [46] McVey J B, Toong T Y. Mechanism of instabilities of exothermic hypersonic blunt-body flows[J]. Combustion Science and Technology, 1971, 3:63-76. doi: 10.1080/00102207108952273
    [47] Alpert R L, Toong T Y. Periodicity in exothermic hypersonic flows about blunt projectiles[J]. Acta Astronautica, 1972, 17:539-560. http://cn.bing.com/academic/profile?id=672bb7d5cc05699f4a732ac3b283bff9&encoded=0&v=paper_preview&mkt=zh-cn
    [48] Lehr H F. Experiments on shock-induced combustion[J]. Acta Astronautica, 1972, 17:589-597. http://cn.bing.com/academic/profile?id=b7a66189db0184121fa057affc57319a&encoded=0&v=paper_preview&mkt=zh-cn
    [49] Broda J C. An experimental study of oblique detonation waves[D]. Connecticut: University of Connecticut, 1993.
    [50] Desbordes D, Hamada L, Guerraud C. Supersonic H2-air combustions behind oblique shock waves[J]. Shock Waves, 1995, 4(6):339-345. doi: 10.1007/BF01413876
    [51] Kamel M R, Morris C I, Stouklov I G, et al. PLIF imaging of hypersonic reactive flow around blunt bodies[J]. Symposium on Combustion, 1996, 26(2):2909-2915. doi: 10.1016/S0082-0784(96)80132-9
    [52] 柳森, 简和祥, 白智勇, 等. 37mm冲压加速器热发射试验初步结果[J].流体力学实验与测量, 1999, 13(3):32-41. doi: 10.3969/j.issn.1672-9897.1999.03.005

    Liu S, Jian H X, Bai Z Y, et al. Preliminary results of 37mm bore ram accelerator hot shot tests[J]. Experiments and Mea-surements in Fluid Mechanics, 1999, 13(3):32-35. doi: 10.3969/j.issn.1672-9897.1999.03.005
    [53] 柳森, 简和祥, 白智勇, 等. 37mm冲压加速器试验和计算[J].力学学报, 1999, 31(4):450-456. doi: 10.3321/j.issn:0459-1879.1999.04.009

    Liu S, Jian H X, Bai Z Y, et al. Experimental tests and numerical calculations for the 37mm ram accelerator[J]. Acta Mechnica Sinica. 1999, 31(4):450-455. doi: 10.3321/j.issn:0459-1879.1999.04.009
    [54] 崔东明.驻定斜爆轰特性的理论与实验研究[D].南京: 南京理工大学, 1999.

    Cui D M. Theoretical and expermental studies on characteristics of steady oblique detonation[D]. Nanjing: Nanjing University of Science and Technology, 1999.
    [55] 崔东明, 范宝春.用于推进的驻定斜爆轰的基本特征[J].宇航学报, 1999, 20(2):48-54. doi: 10.3321/j.issn:1000-1328.1999.02.008

    Cui D M, Fan B C. The essential feature of steady detonation wave using propulsion[J]. Journal of Astronautics, 1999, 20(2):48-54. doi: 10.3321/j.issn:1000-1328.1999.02.008
    [56] 崔东明, 范宝春, 邢晓江.驻定在高速弹丸上的斜爆轰波[J].爆炸与冲击, 2002, 22(3):263-266. doi: 10.3321/j.issn:1001-1455.2002.03.013

    Cui D M, Fan B C, Xing X J. Oblique detonation stabilized on a hypervelocity projectile[J]. Explosion and Shock Waves, 2002, 22(3):263-266. doi: 10.3321/j.issn:1001-1455.2002.03.013
    [57] 袁生学, 黄志澄.自持斜爆轰的特性和实验观察[J].宇航学报, 1995, 16(2):90-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500800903

    Yuan S X, Huang Z C. The features and observations of self-sustaining oblique detonation waves[J]. Journal of Astronautics, 1995, 16(2):90-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500800903
    [58] 袁生学, 赵伟, 黄志澄.驻定斜爆轰波的初步实验观察[J].空气动力学学报, 2000, 18(4):473-477. doi: 10.3969/j.issn.0258-1825.2000.04.015

    Yuan S X, Zhao W, Huang Z C. Primary experimental observation of standing oblique detonation waves[J]. Acta Aerodynamic Sinica, 2000, 18(4):473-477. doi: 10.3969/j.issn.0258-1825.2000.04.015
    [59] Sturtzer M O, Togami K, Yamashita S, et al. Detonation wave generated by a hypervelocity projectile[J]. Heat Transfer Research, 2007, 38(4):291-297. doi: 10.1615/HeatTransRes.v38.i4
    [60] 林志勇.高静温超声速预混气爆震起爆与发展过程机理研究[D].长沙: 国防科技大学, 2008.

    Lin Z Y. Research on detonation initiation and development mechanisms in elevated temperature supersonic premixed mixture[D]. Changsha: National University of Defense Technology, 2008.
    [61] 韩旭.超声速预混气中爆震波起爆与传播机理研究[D].长沙: 国防科技大学, 2013.

    Han X. Research on detonation initiation and propagation mechanisms in supersonic premixed flows[D]. Changsha: National University of Defense Technology, 2013.
    [62] Vasiljev A A. Initiation of gaseous detonation by a high speed body[J]. Shock Waves, 1994, 3:321-326. doi: 10.1007/BF01415830
    [63] Lee J H S. Initiation of detonation by a hypervelocity projectile[J]. Prog Astronaut Aeronaut, 1997, 173:293-310. http://cn.bing.com/academic/profile?id=53bfccc23361792986ab47ae47269c97&encoded=0&v=paper_preview&mkt=zh-cn
    [64] Higgins A J, Bruckner A P. Experimental investigation of detonation initiation by hypervelocity blunt projectiles[R]. AIAA-1996-342, 1996.
    [65] Ju Y, Sasoh A. Numerical study of detonation initiation by a supersonic sphere[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 1997, 40(127):19-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201702003
    [66] Ju Y, Masuya G, Sasoh A. Numerical and theoretical studies on detonation initiation by a supersonic projectile[J]. Symposium on Combustion, 1998, 27(2):2225-2231. doi: 10.1016/S0082-0784(98)80071-4
    [67] Verreault J, Higgins A J. Initiation of detonation by conical projectiles[J]. Proceedings of the Combustion Institute, 2011, 33(2):2311-2318. http://cn.bing.com/academic/profile?id=faeabafe027a22955a02cf4e49e960d1&encoded=0&v=paper_preview&mkt=zh-cn
    [68] Pratt D T, Humphrey J W, Glenn D E. Morphology of standing oblique detonation waves[J]. Journal of Propulsion and Power, 1991, 7(5):837-845. doi: 10.2514/3.23399
    [69] Li C, Kailasanath K, Oran E S. Stability of oblique detonations in ram accelerators[R]. AIAA-1992-89, 1992.
    [70] Maeda S, Inada R, Kasahara J, et al. The stabilized oblique detonation wave and unsteady wave structure around hyper-velocity spherical projectile[R]. AIAA-2011-505, 2011.
    [71] Maeda S, Inada R, Kasahara J, et al. Visualization of the non-steady state oblique detonation wave phenomena around hypersonic spherical projectile[J]. Proceedings of the Combustion Institute, 2011, 33(2):2343-2349. http://cn.bing.com/academic/profile?id=1cd1990f89305e92871e809884ad9d7a&encoded=0&v=paper_preview&mkt=zh-cn
    [72] Maeda S, Kasahara J, Matsuo A. Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation[J]. Combust Flame, 2012, 159(2):887-896. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=608397fb2d92e7680843ce8e274bdde8
    [73] Maeda S, Sumiya S, Kasahara J, et al. Initiation and sustaining mechanisms of stabilized oblique detonation waves around projectiles[J]. Proceedings of the Combustion Institute, 2013, 34(2):1973-1980. http://cn.bing.com/academic/profile?id=9f0ffaf41c2d763a3eb533b3f9740ebb&encoded=0&v=paper_preview&mkt=zh-cn
    [74] Maeda S, Sumiya S, Kasahara J, et al. Scale effect of spherical projectiles for stabilization of oblique detonation waves[J]. Shock Waves, 2015, 25(2):141-150. doi: 10.1007/s00193-015-0549-4
    [75] Kaneshige M J, Shepherd J E. Oblique detonation stabilized on a hypervelocity projectile[J]. Symposium on Combustion, 1996, 26(2):3015-3022. doi: 10.1016/S0082-0784(96)80145-7
    [76] Kasahara J, Arai T, Chiba S, et al. Criticality for stabilized oblique detonation waves around spherical bodies in acetylene/oxygen/krypton mixtures[J]. Proceedings of the Combustion Institute, 2002, 29(2):2817-2824.
    [77] Kasahara J, Aral T, Matsuo A, et al. Experimental investigations of steady-state oblique detonation waves generated around hypersonic projectiles[R]. AIAA-2001-1800, 2001.
    [78] 林志勇, 周进, 张继业, 等.预混超声速气流斜激波诱导脱体爆轰研究[J].航空动力学报, 2009, 24(1):50-54. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200901009

    Lin Z Y, Zhou J, Zhang J Y, et al. Investigation of detached detonation induced by oblique shock in premixed supersonic flow[J]. Journal of Aerospace Power, 2009, 24(1):50-54. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200901009
    [79] Lefebvre M H, Fujiwara T. Numerical modeling of combustion processes induced by a supersonic conical blunt body[J]. Combustion and Flame, 1995, 100(1):85-93. http://cn.bing.com/academic/profile?id=b92b4700b7e0611e162010bb0c49ab63&encoded=0&v=paper_preview&mkt=zh-cn
    [80] Vlasenko V V, Sabel'nikov V A. Numerical simulation of inviscid flows with hydrogen combustion behind shock waves and in detonation waves[J]. Combustion, Explosion, and Shock Wave, 1995, 31(3):376-389. doi: 10.1007/BF00742685
    [81] Fusina G, Sislian J P, Parent B. Computational study of formation and stability of standing oblique detonation waves[R]. AIAA-2004-1125, 2004.
    [82] Fusina G, Sislian J P, Parent B. Formation and stability of near chapman-jouguet standing oblique detonation waves[J]. AIAA Journal, 2005, 43(7):1591-1604. doi: 10.2514/1.9128
    [83] Teng H H, Zhao W, Jiang Z L. A novel oblique detonation structure and its stability[J]. Chinese Physics Letter, 2007, 24(7):1985-1988. doi: 10.1088/0256-307X/24/7/055
    [84] Liu Y, Wu D, Yao S B, et al. Analytical and numerical investigations of wedge-induced oblique detonation waves at low inflow mach number[J]. Combustion Science and Technology, 2015, 187(6):843-856. doi: 10.1080/00102202.2014.978865
    [85] Lu F K, Fan H Y, Wilson D R. Detonation waves induced by a confined wedge[J]. Aerospace Science and Technology, 2006, 10:679-685. doi: 10.1016/j.ast.2006.06.005
    [86] 吴伟, 许厚谦, 王亮, 等.超声速弹丸诱导爆轰波的无网格数值模拟[J].推进技术, 2015, 36(5):664-670. http://d.old.wanfangdata.com.cn/Periodical/tjjs201505004

    Wu W, Xu H Q, Wang L, et al. Numerical simulation of denotation wave induced by supersonic projectile using gridless method[J]. Journal of Propulsion Technology, 2015, 36(5):664-670. http://d.old.wanfangdata.com.cn/Periodical/tjjs201505004
    [87] Choi J Y, Jeung I S, Yoon Y. Computational investigation of structure and dynamics of oblique detonation at off-attaching condition[C]//Proceedings of the 22nd International Symposium on Shock Waves. 1999.
    [88] Choi J Y, Shin E J-R, Jeung I S. Unstable combustion induced by oblique shock waves at the non-attaching condition of the oblique detonation wave[J]. Proceedings of the Combustion Institute, 2009, 32(2):2387-2396. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0212409268
    [89] Li C, Kailasanath K, Oran E S. Detonation structures behind oblique shocks[J]. Physics of Fluids, 1993, 6(4):1600-1611. doi: 10.1063-1.868273/
    [90] Viguier C, Silva L F F D, Desbordes D, et al. Onset of oblique detonation waves:comparison between experimental and numerical results for hydrogen-air mixtures[J]. Symposium on Combustion, 1996, 26(2):3023-3031. doi: 10.1016/S0082-0784(96)80146-9
    [91] Papalexandris M V. A numerical study of wedge-induced detonations[J]. Combustion and Flame, 2000, 120(4):526-538. doi: 10.1016/S0010-2180(99)00113-3
    [92] Miao S, Zhou J, Liu S, et al. Formation mechanisms and characteristics of transition patterns in oblique detonations[J]. Acta Astronautica, 2018, 142:121-129. doi: 10.1016/j.actaastro.2017.10.035
    [93] Yang P, Teng H, Jiang Z, et al. Effects of inflow mach number on oblique detonation initiation with a two-step induction-reaction kinetic model[J]. Combustion and Flame, 2018, 193:246-256. doi: 10.1016/j.combustflame.2018.03.026
    [94] Yang P F, Ng H D, Teng H H, et al. Initiation structure of oblique detonation waves behind conical shocks[J]. Physics of Fluids, 2017, 29:086104. doi: 10.1063/1.4999482
    [95] Liu Y, Liu Y S, Wu D, et al. Structure of an oblique detonation wave induced by a wedge[J]. Shock Waves, 2016, 26(2):161-168. doi: 10.1007/s00193-015-0600-5
    [96] Teng H H, Zhang Y N, Jiang Z L. Numerical investigation on the induction zone structure of the oblique detonation waves[J]. Computers and Fluids, 2014, 95:127-131. doi: 10.1016/j.compfluid.2014.03.001
    [97] Verreault J, Higgins A J. Formation and structure of steady oblique and conical detonation waves[J]. AIAA Journal, 2012, 50(8):1766-1772. doi: 10.2514/1.J051632
    [98] Teng H H, Jiang Z L. On the transition pattern of the oblique detonation structure[J]. Journal of Fluid Mechanics, 2012, 713:659-669. doi: 10.1017/jfm.2012.478
    [99] Wang A F, Zhao W, Jiang Z L. The criterion of the existence or inexistence of transverse shock wave at wedge supported oblique detonation wave[J]. Acta Mechanica Sinica, 2011, 27(5):611-619. doi: 10.1007/s10409-011-0463-7
    [100] Silva L F F D, Deshaies B. Stabilization of an oblique detonation wave by a wedge:a parametric numerical study[J]. Combustion and Flame, 2000, 121(1-2):152-166. doi: 10.1016/S0010-2180(99)00141-8
    [101] 刘彧, 王兰, 童泽润.关于斜爆震起爆和三波点结构的讨论[C]//第五届爆震与新型推进学术会议论文集. 2017.
    [102] Liu Y, Wang L, Xiao B, et al. Hysteresis phenomenon of the oblique detonation wave[J]. Combustion and Flame, 2018, 192:170-179. doi: 10.1016/j.combustflame.2018.02.010
    [103] Miao S K, Zhou J, Lin Z R, et al. Numerical study on thermodynamic efficiency and stability of oblique detonation waves[J]. AIAA Journal, 2018, 56(8):3112-3122. doi: 10.2514/1.J056887
    [104] Viguier C, Gourara A, Desbordes D. Three-dimensional structure of stabilization of oblique detonation wave in hypersonic flow[J]. Symposium on Combustion, 1998, 27(2):2207-2214. doi: 10.1016/S0082-0784(98)80069-6
    [105] Harris P G, Farinaccio R, Stowe R A, et al. Structure of conical oblique detonation waves[R]. AIAA-2008-4687, 2008.
    [106] Choi J Y, Kim D W, Jeung I S, et al. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation[J]. Proceedings of the Combustion Institute, 2007, 31(2):2473-2480. doi: 10.1016/j.proci.2006.07.173
    [107] Choi J Y, Kim D W, Jeung I S, et al. Capturing unstable wrinkled oblique detonation wave front by Hi-Fi numerical simulation[R]. AIAA-2006-5100, 2006.
    [108] Teng H H, Ng H D, Li K, et al. Evolution of cellular structures on oblique detonation surfaces[J]. Combustion and Flame, 2015, 162:470-477. doi: 10.1016/j.combustflame.2014.07.021
    [109] Choi J Y. Onset condition of oblique detonation wave cell structures[R]. AIAA-2008-1032, 2008.
    [110] Daimon Y, Matsuo A, Kasahara J. Wave structure and unsteadiness of stabilized oblique detonation waves around hypersonic projectile[R]. AIAA-2007-1171, 2007.
    [111] Gui M Y, Fan B C. Wavelet structure of wedge-induced oblique detonation waves[J]. Combustion Science and Technology, 2012, 184(10-11):1456-1470. doi: 10.1080/00102202.2012.693414
    [112] Gui M Y, Fan B C, Dong G. Periodic oscillation and fine structure of wedge-induced oblique detonation waves[J]. Acta Mech Sin, 2011, 27(6):922-928. doi: 10.1007/s10409-011-0508-y
    [113] 董刚, 范宝春.来流温度影响驻定爆轰波结构和性能的数值研究[J].高压物理学报, 2011, 25(3):193-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201101765563

    Dong G, Fan B C. The numerical investigations of standing de-tonation wave structure and performance at the different initial temperatures[J]. Chinese Journal of High Pressure Physics, 2011, 25(3):193-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201101765563
    [114] 陈楠, Bhattrai S, 唐豪.温度扰动对ODW结构影响的数值模拟[J].北京航空航天大学学报, 2018, 44(7):1537-1546. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201807023

    Chen N, Bhattrai S, Tang H. Numerical simulation of influence of temperature disturbance on oblique detonation wave structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7):1537-1546. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201807023
    [115] Verreault J, Higgins A J, Stowe R A. Formation of transverse waves in oblique detonations[J]. Proc Combust Inst, 2013, 34(2):1913-1920. http://cn.bing.com/academic/profile?id=05c905c547ee6069123fedc729c8c397&encoded=0&v=paper_preview&mkt=zh-cn
    [116] Teng H H, Jiang Z L, Ng H D. Numerical study on unstable surfaces of oblique detonations[J]. Journal of Fluid Mechanics, 2014, 744:111-128. doi: 10.1017/jfm.2014.78
    [117] Li C, Kailasanath K, Oran E S. Effecets of boundary layers on oblique-detonation structures[R]. AIAA-1993-0450, 1993.
    [118] 王爱峰, 滕宏辉, 赵伟, 等.边界层对驻定斜爆轰结构和稳定性的影响[J].科学技术与工程, 2013, 13(23):6781-6787. doi: 10.3969/j.issn.1671-1815.2013.23.023

    Wang A F, Teng H H, Zhao W, et al. Boundary layer effect on the structure and stability of standing ODW[J]. Science Technology and Engineering, 2013, 13(23), 6781-6787. doi: 10.3969/j.issn.1671-1815.2013.23.023
    [119] Massa L, Lu F K. The role of the induction zone on the detonation-turbulence linear interaction[J]. Combustion Theory and Modelling, 2011, 53(3):347-371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/13647830.2010.540353
    [120] Mahmoudi Y, Karimi N, Deiterding R, et al. Hydrodynamic instabilities in gaseous detonations:comparison of Euler, Navier-Stokes, and Large-Eddy Simulation[J]. Journal of Propulsion and Power, 2014, 30(2):384-396. doi: 10.2514/1.B34986
    [121] Jin T, Luo K, Dai Q, et al. Simulations of cellular detonation interaction with turbulent flows[J]. AIAA Journal, 2016, 54(2):419-433. doi: 10.2514/1.J054538
    [122] Masselot D, Fiévety R, Raman V. Effect of equivalence ratio and turbulence fluctuations on the propagation of detonations[R]. AIAA-2017-0374, 2017.
    [123] Chambers J M, Ahmed K A. Turbulence induced deflagration-to-detonation transition[R]. AIAA-2017-4907, 2017.
    [124] Maxwell B M, Bhattacharjee R R, Lau-Chapdelaine S S M, et al. Influence of turbulent fluctuations on detonation propagation[J]. J Fluid Mech, 2017, 818:646-696. doi: 10.1017/jfm.2017.145
    [125] Thomas G, Bambrey R, Brown C. Experimental observations of flame acceleration and transition to detonation following shock-flame interaction[J]. Combustion Theory & Modelling, 2001, 6(3):527-528. http://cn.bing.com/academic/profile?id=3ff7b85f65c474e2f3e1e5a14edf8e31&encoded=0&v=paper_preview&mkt=zh-cn
    [126] Lee J H S, Knystautas R, Freiman A. High speed turbulent deflagrations and transition to detonation in H2-air mixtures[J]. Combustion & Flame, 1984, 56(2):227-239. doi: 10.1016-0010-2180(84)90039-7/
    [127] Hussein S M, Lu F K. Single and two-point analysis of velocity fluctuations in a detonation-turbulence interaction[R]. AIAA-2015-3216, 2015.
    [128] Mahmoudi Y, Mazaheri K. High resolution numerical simulation of triple point collision and origin of unburned gas pockets in turbulent detonations[J]. Acta Astronautica, 2015, 115:40-51. doi: 10.1016/j.actaastro.2015.05.014
    [129] Emami S, Mazaheri K, Shamooni A, et al. LES of flame acce-leration and DDT in hydrogeneair mixture using artificially thickened flame approach and detailed chemical kinetics[J]. International Journal of Hydrogen Energy, 2015, 40:7395-7408. doi: 10.1016/j.ijhydene.2015.03.165
    [130] Poludnenko A Y, Gardiner T A, Oran E S. Spontaneous transition of turbulent flames to detonations in unconfined media[J]. Phys Rev Lett, 2011, 107(5):054501. doi: 10.1103/PhysRevLett.107.054501
    [131] Jackson T L, Hussaini M Y, Ribner H S. Interaction of turbulence with a detonation wave[J]. Physics of Fluids A:Fluid Dynamics, 1993, 5(3):745-749. doi: 10.1063/1.858657
    [132] Oran E S, Gamezo V N. Origins of the deflagration-to-detonation transition in gas-phase combustion[J]. Combust Flame, 2007, 148(1):4-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4cf0d5c02c507b4281e25a3cd95da815
    [133] Massa L, Chauhan M, Lu F K. Detonation-turbulence interaction[J]. Combustion and Flame, 2011, 158(9):1788-1806. doi: 10.1016/j.combustflame.2011.01.014
    [134] Smirnov N N, Nikitin V F, Shurekhdeli S A. Investigation of self-sustaining waves in metastable systems:deflagration-to-detonation transition[J]. Journal of Propulsion and Power, 2009, 25(3):593-608. doi: 10.2514/1.33078
    [135] Smirnov N N, Betelin V B, Nikitin V F, et al. Detonation engine fed by acetylene-oxygen mixture[J]. Acta Astronautica, 2014, 104:134-146. doi: 10.1016/j.actaastro.2014.07.019
    [136] Smirnov N N, Penyazkov O G, Sevrouk K L, et al. Detonation onset following shock wave focusing[J]. Acta Astronautica, 2017, 135:114-130. doi: 10.1016/j.actaastro.2016.09.014
    [137] Smirnov N N, Nikitin V F, Phylippov Y G. Deflagration-to-detonation transition in gases in tubes with cavities[J]. Journal of Engineering Physics and Thermophysics, 2010, 83(6):1287-1316. doi: 10.1007/s10891-010-0448-6
    [138] Towery C A Z, Smith K M, Prateek S, et al. Examination of turbulent flow effects in rotating detonation engines[R]. AIAA-2014-3031, 2014.
    [139] Frolov S M, Dubrovskii A V, Ivanov V S. Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer[J]. Russian Journal of Physical Chemistry B, 2013, 7(1):35-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84ecfbb45e0b74ddee0174b355dfdc20
    [140] Choi J Y, Jeung I S. Numerical simulation of super-detonative ram accelerator; its shock-induced combustion and oblique detonation[M]//Hypervelocity Launchers. Springer International Publishing, 2016.
    [141] 刘彧, 周进, 林志勇.流边界层效应下斜坡诱导的斜爆轰波[J].物理学报, 2014, 63(20):221-228. http://d.old.wanfangdata.com.cn/Periodical/wlxb201420030

    Liu Y, Zhou J, Lin Z Y. Ramp-induced oblique detonation wave with an incoming boundary layer effect[J]. Acta Physica Sinica, 2014, 63(20):221-228. http://d.old.wanfangdata.com.cn/Periodical/wlxb201420030
    [142] Yu M, Miao S. Initiation characteristics of oblique detonation waves in turbulence flows[J]. Acta Astronautica, 2018, 147:195-204. doi: 10.1016/j.actaastro.2018.04.022
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  378
  • HTML全文浏览量:  163
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-22
  • 修回日期:  2018-06-06
  • 刊出日期:  2019-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日