留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于特征线理论的旋转爆震流场结构特征研究

宫继双 周林 张义宁 滕宏辉

宫继双, 周林, 张义宁, 等. 基于特征线理论的旋转爆震流场结构特征研究[J]. 实验流体力学, 2019, 33(1): 89-96. doi: 10.11729/syltlx20180072
引用本文: 宫继双, 周林, 张义宁, 等. 基于特征线理论的旋转爆震流场结构特征研究[J]. 实验流体力学, 2019, 33(1): 89-96. doi: 10.11729/syltlx20180072
Gong Jishuang, Zhou Lin, Zhang Yining, et al. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. doi: 10.11729/syltlx20180072
Citation: Gong Jishuang, Zhou Lin, Zhang Yining, et al. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. doi: 10.11729/syltlx20180072

基于特征线理论的旋转爆震流场结构特征研究

doi: 10.11729/syltlx20180072
基金项目: 

国家自然科学基金项目 91641130

国家自然科学基金项目 51376165

国家自然科学基金项目 11372333

详细信息
    作者简介:

    宫继双(1982-), 男, 河北围场人, 博士, 高级工程师。研究方向:爆震发动机技术。通信地址:北京市丰台区云岗西路17号院(100074)。E-mail:gongjishu@163.com

    通讯作者:

    周林, E-mail: zhou_lin2015@126.com

  • 中图分类号: O381;V231.2+2

Investigation on flow field structure of rotating detonation using the method of characteristics

  • 摘要: 特征线理论及其计算方法是气体动力学的经典理论与方法,应用于旋转爆震流场分析具有简单高效的特点。将坐标系建立在爆震波上,对旋转爆震流场进行简化,采用特征线理论并结合流场计算单元过程,建立旋转爆震流场计算模型。研究了当量比和喷注参数对氢气/空气、甲烷/空气以及辛烷/空气3种不同预混气的旋转爆震流场结构特征的影响。结果表明:爆震波高度和倾斜角度受混气当量比和喷注总温影响明显;燃料由小分子氢燃料变为大分子碳氢燃料时,爆震波高度和倾斜角度逐渐减小;混气当量比和喷注总温主要通过影响爆震波传播速度、高度和倾斜角度而影响爆震波后宏观流场特征趋势。
  • 图  1  旋转爆震流场示意图

    Figure  1.  Schematic diagram of a rotating detonation flow field

    图  2  反应物喷注模型

    Figure  2.  Reactant injection model

    图  3  旋转爆震全流场迭代流程图

    Figure  3.  Flow chart of the rotating detonation flow field iteration

    图  4  流场迭代收敛过程

    Figure  4.  Convergence history of the flow field iteration

    图  5  旋转爆震流场计算结果

    Figure  5.  Calculation results of the rotating detonation flow field

    图  6  本文计算结果与文献结果对比

    Figure  6.  Comparison of fuel mass rates among this paper and references

    图  7  当量比、喷注总温和喷注总压对爆震波高度和倾斜角度的影响

    Figure  7.  Effect of equivalence ratio, the plenum stagnation temperature and plenum stagnation pressure on detonation wave height and inclination angle

    图  8  当量比、喷注总温和喷注总压对爆震波周向传播速度与反应物喷注速度的影响

    Figure  8.  Effect of equivalence ratio, the plenum stagnation temperature and plenum stagnation pressure on the circumferential velocity of detonation wave and the velocity of reactant injection

    图  9  当量比、喷注总温和喷注总压对爆震波后宏观流场的影响

    Figure  9.  Effect of equivalence ratio, the plenum stagnation temperature and plenum stagnation pressure on the macroscopic flow field behind the detonation wave

  • [1] Wolański P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158. http://d.old.wanfangdata.com.cn/Periodical/yhxb201801013
    [2] Lu F K, Braun E M. Rotating detonation wave propulsion:experimental challenges, modeling, and engine concepts[J]. Journal of Propulsion and Power, 2014, 30(5):1125-1142. doi: 10.2514/1.B34802
    [3] Dabora E K, Nicholls J A, Morrison R B. The influence of a compressible boundary on the propagation of gaseous detonations[J]. Symposium (International) on Combustion, 1965, 10(1):817-830. doi: 10.1016/S0082-0784(65)80225-9
    [4] Sommers W P, Morrison R B. Simulation of condensed-explosive detonation phenomena with gases[J]. Physics of Fluids, 1962, 5:241-248. doi: 10.1063/1.1706602
    [5] Sichel M, Foster J C. The ground impulse generated by a plane fuel-air explosion with side relief[J]. Acta Astronautica, 1979, 6(3-4):243-256. doi: 10.1016/0094-5765(79)90096-1
    [6] 林伟, 周进, 林志勇, 等.热射流起爆过程的数值模拟[J].国防科技大学学报, 2015, 37(1):70-77, 89. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201501012

    Lin W, Zhou J, Lin Z Y, et al. Numerical simulation of detonation onset by hot jets[J]. Journal of National University of Defense Technology, 2015, 37(1):70-77, 89. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201501012
    [7] 姜孝海, 范宝春, 董刚, 等.旋转爆轰流场的数值模拟[J].推进技术, 2007, 28(4):403-407. doi: 10.3321/j.issn:1001-4055.2007.04.014

    Jiang X H, Fan B C, Dong G, et al. Numerical investigation on the flow field of rotating detonation wave[J]. Journal of Propulsion Technology, 2007, 28(4):403-407. doi: 10.3321/j.issn:1001-4055.2007.04.014
    [8] Schwer D, Kailasanath K. Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels[J]. Proceedings of the Combustion Institute, 2013, 34(2):1991-1998. http://cn.bing.com/academic/profile?id=0d31c33ea917c211de2c68354bda5dfa&encoded=0&v=paper_preview&mkt=zh-cn
    [9] Tsuboi N, Eto S, Hayashi A K, et al. Front cellular structure and thrust performance on hydrogen-oxygen rotating detonation engine[J]. Journal of Propulsion and Power, 2016, 33(1):100-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41e97ed96a0bbbd245f1918971d0a03e
    [10] Tsuboi N, Watanabe Y, Kojima T, et al. Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen-oxygen mixture[J]. Proceedings of the Combustion Institute, 2015, 35(2):2005-2013. doi: 10.1016/j.proci.2014.09.010
    [11] Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotating detonations[J]. Shock Waves, 2009, 19(1):1-10. doi: 10.1007/s00193-008-0178-2
    [12] Zhou R, Wang J P. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines[J]. Combustion and Flame, 2012, 159(12):3632-3645. doi: 10.1016/j.combustflame.2012.07.007
    [13] Mizener A R, Lu F K. Low-order parametric analysis of a rotating detonation engine in rocket mode[J]. Journal of Propulsion and Power, 2017, 33(6):1543-1554. doi: 10.2514/1.B36432
    [14] Kaemming T, Fotia M L, Hoke J, et al. Thermodynamic mo-deling of a rotating detonation engine through a reduced-order approach[J]. Journal of Propulsion and Power, 2017, 33(5):1170-1178. doi: 10.2514/1.B36237
    [15] Sousa J, Braun J, Paniagua G. Development of a fast evaluation tool for rotating detonation combustors[J]. Applied Mathematical Modelling, 2017(52):42-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ffa496b404616e8e1acd253ea5430c98
    [16] Fievisohn R T, Yu K H. Steady-state analysis of rotating detonation engine flowfields with the method of characteristics[J]. Journal of Propulsion and Power, 2017, 33(1):89-99. doi: 10.2514/1.B36103
    [17] Fievisohn R, Yu K. Method of characteristic analysis of gaseous detonations bounded by an inert gas[C]//Proc of the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, Leeds, 2015.
    [18] Zucrow M J, Hoffman J D. Gas dynamics. Volume 2-multidimensional flow[M]. New York:John Wiley and Sons, Inc., 1977:185-266.
    [19] Thompson P A. Compressible-fluid dynamic[M]. New York:McGraw-Hill, 1971:454-455.
    [20] Oneill J B, Powers S A. Determination of hypersonic flow fields by the method of characteristics[J]. AIAA Journal, 1963, 1(7):1693-1694. doi: 10.2514/3.1897
    [21] Goodwin D G, Moffat H K, Speth R L. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.3.0[CP/OL].[2018-03-01] http://www.cantera.org.
    [22] Westbrook C K, Pitz W J, Herbinet O, et al. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane[J]. Combustion and flame, 2009, 156(1):181-199. doi: 10.1016/j.combustflame.2008.07.014
    [23] Schwer D, Kailasanath K. Numerical study of the effects of engine size on rotating detonation engines[R]. AIAA-2011-581, 2011.
    [24] 严传俊, 范玮.脉冲爆震发动机原理及关键技术[M].西安:西北工业大学出版社, 2005:37-38.

    Yan C J, Fan W. Principles and crucial techniques of pulse detonation engine[M]. Xi'an:Northwestern Polytechnical University Press, 2005:37-38.
  • 加载中
图(9)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  161
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-18
  • 修回日期:  2018-09-29
  • 刊出日期:  2019-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日