留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粒子运动轨迹的图像处理及流场重构算法研究

吴凡 周骛 蔡小舒

吴凡, 周骛, 蔡小舒. 粒子运动轨迹的图像处理及流场重构算法研究[J]. 实验流体力学, 2019, 33(4): 100-107. doi: 10.11729/syltlx20180070
引用本文: 吴凡, 周骛, 蔡小舒. 粒子运动轨迹的图像处理及流场重构算法研究[J]. 实验流体力学, 2019, 33(4): 100-107. doi: 10.11729/syltlx20180070
Wu Fan, Zhou Wu, Cai Xiaoshu. Image processing algorithm for particle trajectory image and reconstruction study on flow field[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 100-107. doi: 10.11729/syltlx20180070
Citation: Wu Fan, Zhou Wu, Cai Xiaoshu. Image processing algorithm for particle trajectory image and reconstruction study on flow field[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 100-107. doi: 10.11729/syltlx20180070

粒子运动轨迹的图像处理及流场重构算法研究

doi: 10.11729/syltlx20180070
基金项目: 

国家自然科学基金面上项目 51576130

详细信息
    作者简介:

    吴凡(1994-), 男, 安徽铜陵人, 硕士研究生。研究方向:图像法流场测速, 图像处理。通信地址:上海市杨浦区军工路516号上海理工大学能源与动力工程学院颗粒与两相流测量研究所(200093)。E-mail:1971113508@qq.com

    通讯作者:

    蔡小舒, E-mail: usst_caixs@163.com

  • 中图分类号: TK31

Image processing algorithm for particle trajectory image and reconstruction study on flow field

  • 摘要: 为了高效获得颗粒的速度分布,提出一种针对单帧单曝光图像的图像处理方法和流场重构方法。图像处理过程包含去噪、锐化、自适应阈值分割、闭运算、去除小颗粒、骨架提取、速度提取、二义性判断、求切线等步骤和方法,对该处理过程的主要误差也进行了分析与修正。流场重构使用了基于RBF(Radial Basis Function)插值且采用迎风插值进行优化的算法,插值结果以速度云图及矢量图的形式展示,对该过程的主要误差也进行了分析与验证。最后的处理结果显示,针对单帧单曝光图像的图像处理方法和流场重构方法具有可行性。
  • 图  1  运动模糊图像及其成像模型

    Figure  1.  Motion blur image and its imaging model

    图  2  骨架提取示意图

    Figure  2.  Sketch of skeletonizing

    图  3  图像处理主要流程[15]

    Figure  3.  Main steps of image processing[15]

    图  4  新旧算法求轨迹长度的对比

    Figure  4.  The difference on trajectory lengths between the traditional and the new algorithm

    图  5  新旧算法求速度方向的对比

    Figure  5.  The difference on velocity direction between the traditional and the new algorithm

    图  6  2种速度提取算法精度比较

    Figure  6.  Accuracy contrast between the traditional and the new algorithm

    图  7  角速度判据

    Figure  7.  Angular velocity verdict

    图  8  2帧图片的匹配与叠加过程

    Figure  8.  Match and compound processing of two frame images

    图  9  多种运动的仿真运动模糊图片

    Figure  9.  Simulation image contains different motion blur

    图  10  不同二值化过程的误差

    Figure  10.  Error by different binary options

    图  11  骨架提取结果与轨迹方向的关系

    Figure  11.  Relation between skeletonizing and trajectory direction

    图  12  不同轨迹尺寸下二值图与骨架图的运动长度

    Figure  12.  Motion length of binary and skeleton image on different trajectory sizes

    图  13  不同长宽比(φ)下二值图与骨架图的运动长度

    Figure  13.  Motion length of binary and skeleton image with different width/length rate (φ)

    图  14  仿真流场(a)与插值流场(b)对比

    Figure  14.  Contrast between simulation flow field (a) and interpolation flow field (b)

    图  15  原始图像

    Figure  15.  Original image

    图  16  轨迹骨架图

    Figure  16.  Skeleton image of trajectory

    图  17  速度云图

    Figure  17.  Contour of the velocity field

    图  18  速度矢量图

    Figure  18.  Velocity field vector diagram

    图  19  速度的散度云图

    Figure  19.  Contour of the divergence of velocity

    表  1  插值结果误差分析

    Table  1.   Error analysis on interpolation

    Interpolation function δ
    multiquadric 1.057
    gaussian 5.645
    linear 1.444
    log 1.647
    下载: 导出CSV
  • [1] Koeninger B, Henslers T, Schug S, et al. Horizontal secondary gas injection in fluidized beds:solid concentration and velocity in multiphase jets[J]. Powder Technology, 2017, 316:49-58. doi: 10.1016/j.powtec.2017.01.057
    [2] Yang Y, Kang B S. Development and validation of digital holographic particle velocity measurement system for rotational flows[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(19):2223-2227. doi: 10.1016/j.ijleo.2015.05.103
    [3] Andreas F. Model-based review of Doppler global velocimetry techniques with laser frequency modulation[J]. Optics and Lasers in Engineering, 2017, 93:19-35. doi: 10.1016/j.optlaseng.2017.01.004
    [4] Komine H. System for measuring velocity field of fluid flow utilizing a laser-Doppler spectral image converter: US4919536[P]. 1990-04-24.
    [5] 金光, 焦晶晶, 吴晅.典型流场测速技术应用研究进展[J].矿山机械, 2015, 43(12):10-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ksjx201512003

    Jin G, Jiao J J, Wu X. Research progress on application of typical flow field velocimetry technology[J]. Mining & Processing Equipment, 2015, 43(12):10-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ksjx201512003
    [6] 胡涛. PTV匹配算法的对比分析[D].北京: 清华大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10003-1011280837.htm

    Hu Tao. Comparison of particle matching algorithms for PTV[D].Beijing: Tsinghua University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10003-1011280837.htm
    [7] 申功炘.全场观测技术概念、进程与展望[J].北京航空航天大学学报, 1997, 23(3):332-340. http://www.cnki.com.cn/Article/CJFDTotal-BJHK703.012.htm

    Shen G X.Concept trace trend on fullfield observation and measurement techniques[J]. Journal of Beijing University of Aeronautics and Astronautics, 1997, 23(3):332-340. http://www.cnki.com.cn/Article/CJFDTotal-BJHK703.012.htm
    [8] 周云龙, 宋连状, 周红娟.稀相颗粒二维速度场测量PTV法的研究进展[J].化工进展, 2010, 29(z2):17-21. http://d.old.wanfangdata.com.cn/Periodical/hgjz2010z2004

    Zhou Y L, Song L Z, Zhou H J. Research progress of PTV method in two-dimensional dilute phase particle velocity measurement[J]. Chemical Industry and Engineering Progress, 2010, 29(z2):17-21. http://d.old.wanfangdata.com.cn/Periodical/hgjz2010z2004
    [9] 禹明忠. PTV技术和颗粒三维运动规律的研究[D].北京: 清华大学, 2002. http://cdmd.cnki.com.cn/Article/CDMD-10003-2004032001.htm

    Yu M Z. Study on the PTV technique and 3D movement of particles[D]. Beijing: Tsinghua University, 2002. http://cdmd.cnki.com.cn/Article/CDMD-10003-2004032001.htm
    [10] 杨福胜, 张早校, 王斯民, 等.粒子追踪测速(PTV)技术及其在多相流测试中的应用[J].流体机械, 2014, 42(2):37-42. doi: 10.3969/j.issn.1005-0329.2014.02.009

    Yang F S, Zhang Z X, Wang S M, et al. Particle tracking velocimetry and its application to the measurement of multiphase flow[J]. Fluid Machinery, 2014, 42(2):37-42. doi: 10.3969/j.issn.1005-0329.2014.02.009
    [11] 刘春嵘, 刘波.基于形心主轴的二维DPTV算法[J].实验流体力学, 2007, 21(3):66-69. doi: 10.3969/j.issn.1672-9897.2007.03.014

    Liu C R, Liu B. Two-dimensional DPTV algorithm based on central principal axis[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3):66-69. doi: 10.3969/j.issn.1672-9897.2007.03.014
    [12] 陈晶丽, 李琛, 蔡小舒, 等.流动多参数场的单帧图像法测量方法研究[J].实验流体力学, 2015, 29(6):67-73. http://www.syltlx.com/CN/abstract/abstract10892.shtml

    Cheng J L, Li C, Cai X S, et al. Research on single frame imaging method for measuring multi-parameter fields in flow field[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(6):67-73. http://www.syltlx.com/CN/abstract/abstract10892.shtml
    [13] Jing J Q, Xiao F, Yang L, et al. Measurements of velocity field and diameter distribution of particles in multiphase flow based on trajectory imaging[J]. Flow Measurement and Instrumenta-tion, 2018, 59:103-113. doi: 10.1016/j.flowmeasinst.2017.12.005
    [14] 张晶晶.基于单帧单曝光图像法的多相流速度场和粒度分布测量研究[D].上海: 上海理工大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10252-1013010566.htm

    Zhang J J. Study on measurement for velocity vector field and granularity distribution of multi-phase flow based on single-frame and single-exposure imaging[D]. Shanghai: University of Shanghai for Science and Technology, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10252-1013010566.htm
    [15] Maas H G, Gruen A, Papantoniou D. Particle tracking velocimetry in three-dimensional flows:part 1-photogram-metric determination of particle coordinates[J]. Experiments in Fluids, 1993, 15(2):133-146. doi: 10.1007/BF00190953
    [16] Malik N A, Dracos T, Papantoniou D A. Particle tracking velocimetry in three-dimensional flows:part 2-particle tracking[J]. Experiments in Fluids, 1993, 15(4-5):279-294.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  160
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-29
  • 修回日期:  2018-12-28
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日