留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气动除冰类飞机结冰风洞试验适航审定技术

高郭池 丁丽 李保良 王梓旭 姜裕标

高郭池, 丁丽, 李保良, 等. 气动除冰类飞机结冰风洞试验适航审定技术[J]. 实验流体力学, 2019, 33(2): 85-94. doi: 10.11729/syltlx20180067
引用本文: 高郭池, 丁丽, 李保良, 等. 气动除冰类飞机结冰风洞试验适航审定技术[J]. 实验流体力学, 2019, 33(2): 85-94. doi: 10.11729/syltlx20180067
Gao Guochi, Ding Li, Li Baoliang, et al. Airworthiness certification technology about icing wind tunnel test for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 85-94. doi: 10.11729/syltlx20180067
Citation: Gao Guochi, Ding Li, Li Baoliang, et al. Airworthiness certification technology about icing wind tunnel test for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 85-94. doi: 10.11729/syltlx20180067

气动除冰类飞机结冰风洞试验适航审定技术

doi: 10.11729/syltlx20180067
详细信息
    作者简介:

    高郭池(1966-)男, 山东郓城人, 高级工程师。研究方向:飞行适航审定技术、噪声适航审定技术、除防冰适航审定技术。通信地址:辽宁省沈阳市大东区小河沿路3号(110043)。E-mail:gaogc@syacc.org

    通讯作者:

    高郭池, E-mail:gaogc@syacc.org

  • 中图分类号: V271.1;V211.73

Airworthiness certification technology about icing wind tunnel test for pneumatic de-icing aircraft

  • 摘要: 民用飞机为获得型号合格证,应按照有关结冰适航规章条款进行结冰适航验证,如何解读适航条款要求并制定有效的符合性验证流程,是进行适航合格审定的关键。本文以Y12F气动除冰飞机结冰风洞试验的实际工程为例,以相关结冰适航文件为基础,结合国际最新的飞机结冰研究成果,研究并总结了目标试验状态设定、设备选择、试验状态的等效转换、模型研制、风洞试验等适航审定要求和技术。构建的结冰风洞试验适航审定方法,有效地指导完成了Y12F飞机除冰系统的适航验证工作,完成中国民用航空局(CAAC)和美国联邦航空管理局(FAA)同时审查,为获得CAAC和FAA型号合格证奠定良好基础。
  • 图  1  除冰套模型压力曲线与除冰套原型压力曲线对比

    Figure  1.  The pressure curve of de-icing boot model contrasts with the pressure curve of prototype de-icing boot

    图  2  冰形表面粗糙度(右)与砂纸对比照片

    Figure  2.  The roughness comparison between ice shape surface (right) and the sandpaper (left)

    图  3  结冰风洞试验的冰形铸模示意图

    Figure  3.  Diagram for ice shape moulds

    表  1  Y12F飞机典型飞行状态参数

    Table  1.   Classic flight profile parameter of Y12F aircraft

    No. Flight profile Altitude/
    feet
    Flap position/
    (°)
    Air speed/
    knots
    AOA of wing/
    (°)
    AOAof HT/
    (°)
    1 Takeoff 0 0 89 6.3 -0.5
    2 Climb 3000 0 139 4.3 -1.5
    3 Cruise 10000 0 301 0.4 -4.5
    4 Descent 20000 0 169 0.9 -3.9
    5 Holding 10000 0 207 3.4 -2.5
    6 Landing 0 20 69 1.6 -7.6
    注:HT-Horizontal Tail,AOA-Angle of Attack
    下载: 导出CSV

    表  2  Y12F飞机结冰风洞试验的目标试验状态(目标试验条件矩阵)

    Table  2.   The target test conditions of Y12F aircraft in icing wind tunnel test (test conditions matrix)

    No. Liquid water content/
    (g·m-3)
    Mean volumetric diameter/
    μm
    Static air temperature/ Flight profile Air speed/knots Inflation pressure/
    psig
    Boot cycle time/
    s
    CCAR25 appendix C maximum conditions Objective of simulation run/remarks
    1 0.53 17 14 -10.0 Takeoff 89 18 60 Continuous Intercycle
    2 0.53 17 14 -10.0 Landing 69 18 60 Continuous Intercycle
    3 0.51 20 21 -6.10 Landing 69 18 60 Continuous Intercycle
    4 0.20 35 21 -6.10 Climb 139 18 60 Continuous Residual
    5 0.68 15 21 -6.10 Descent 169 18 60 Continuous Intercycle
    6 0.50 22 -4 -20.0 Cruise 301 18 60 Intermittent Residual
    7 0.23 30 14 -10.0 Cruise 301 18 60 Continuous Residual
    8 0.50 18 14 -10.0 Cruise 301 18 60 Continuous Residual
    9 0.30 15 -4 -20.0 Cruise 301 18 60 Continuous Residual
    10 0.51 20 21 -6.10 Holding 207 18 60 Continuous Intercycle
    11 0.10 40 14 -10.0 Holding 207 18 60 Continuous Residual
    12 0.15 25 -4 -20.0 Holding 207 18 60 Continuous Intercycle
    13 0.53 17 14 -10.0 Holding 207 14 60 Continuous Low pressure-intercycle
    14 0.50 22 Adjust Holding 207 18 60 Continuous Run-back
    15 0.30 110 23 -5.0 Cruise 301 18 60 SLD Residual
    16 0.52 40 14 -10.0 Climb 139 18 NA Intermittent Pre-activation- 2 minute
    17 0.52 40 14 -10.0 Cruise 301 18 NA Intermittent Pre-activation- 2 minute
    18 0.80 28 -4 -20.0 Cruise 301 18 60 Intermittent Residual
    19 0.80 28 -4 -20.0 Holding 207 18 60 Intermittent Residual
    20 0.60 28 -22 -30.0 Holding 207 18 60 Intermittent Residual
    21 0.20 15 -22 -30.0 Cruise 301 18 60 Continuous Intercycle
    22 0.50 22 -4 -20.0 Cruise 301 18 60 Intermittent Holding-45 minute duration
    23 0.50 22 -4 -20.0 Cruise 301 18 NA Intermittent 22.5 minutes failure
    注:NA-Not apply, no boot cycling.
    下载: 导出CSV

    表  3  试验状态等效变换方法

    Table  3.   The scaled method on test conditionss

    Test parameter Modified Ruff
    cs User selects
    Tst, s Φs=ΦR
    Vs User selects (typical)
    MVDs K0, s=K0, R
    LWCs n0, s=n0, R
    τs As=AR
    pst, s θs=θR
    下载: 导出CSV

    表  4  试验状态等效变换结果

    Table  4.   The scaled result on test conditions

    c/inch Tst/℉ V/knots δ/μm LWC/(g·m-3) t/s β0/% A n0 b Φ θ
    参考值 44.56 21.0 301 20.0 0.51 60 0.66 0.14 0.07 0.54 5.88 2.16
    等效变换值 44.56 24.5 170 25.4 1.40 40 0.66 0.15 0.1 1.07 5.88 8.96
    下载: 导出CSV

    表  5  Y12F飞机结冰风洞试验的等效模拟试验状态(扩展试验条件矩阵)

    Table  5.   The scaled test conditions of Y12F aircraft in icing wind tunnel test (scaled test conditions matrix)s

    No. LWC/
    (g·m-3)
    MVD/
    μm
    Static air temperature/ Flight profile Air speed/
    knots
    Inflation pressure/
    psig
    Boot cycle time/
    s
    CCAR25 appendix C maximum conditions Objective of simulation run/
    remarks
    1 0.53 17 14.0 -10.0 Takeoff 89 18 60 Continuous Intercycle
    2 0.53 17 14.0 -10.0 Landing 69 18 60 Continuous Intercycle
    3 0.51 20 21.0 -6.1 Landing 69 18 60 Continuous Intercycle
    4 0.60 35 21.0 -6.1 Climb 139 18 60 Continuous Residual
    5 0.68 15 21.0 -6.1 Descent 169 18 60 Continuous Intercycle
    6 0.85 30 -0.5 -18.1 Cruise 170 18 60 Intermittent Residual
    7 0.88 38 17.5 -8.1 Cruise 170 18 60 Continuous Residual
    8 1.80 23 17.5 -8.1 Cruise 170 18 60 Continuous Residual
    9 0.30 15 -0.5 -18.1 Cruise 170 18 60 Continuous Residual
    10 0.75 22 22.0 -5.6 Holding 170 18 60 Continuous Intercycle
    11 0.58 43 15.0 -9.4 Holding 170 18 60 Continuous Residual
    12 0.24 27 -3.0 -19.4 Holding 170 18 60 Continuous Intercycle
    13 0.65 19 15.0 -9.4 Holding 170 14 60 Continuous Low pressure-intercycle
    14 0.50 22 Adjust Holding 170 18 60 Continuous Run-back
    15 1.27 109 10.0 -12.2 Cruise 69 18 60 SLD Residual
    16 0.63 40 14.0 -10.0 Climb 139 18 Na Intermittent Pre-activation-2 minute
    17 1.90 50 17.5 -8.1 Cruise 170 18 Na Intermittent Pre-activation-2 minute
    18 1.50 35 -0.5 -18.1 Cruise 170 18 60 Intermittent Residual
    19 0.95 30 -3.0 -19.4 Holding 170 18 60 Intermittent Residual
    20 0.61 30 -21.0 -29.4 Holding 170 18 60 Intermittent Residual
    21 0.34 19 -18.5 -28.1 Cruise 170 18 60 Continuous Intercycle
    22 0.85 30 -0.5 -18.1 Cruise 170 18 60 Intermittent Holding-45 minute duration
    23 0.85 30 -0.5 -18.1 Cruise 170 18 Na Intermittent 22.5 minute failure
    下载: 导出CSV
  • [1] Smalley C L. Certification of Part 23 airplanes for flight in icing conditions[R]. FAA: AC23. 1419-2D, 2007.
    [2] Potapczuk M G. Lewice E: an Euler based ice accretion code[R]. NASA-TM-105389, 1992.
    [3] Ruff G A, Berkowitz B M. Users manual for the NASA Lewis ice accretion prediction code (Lewice)[R]. NASA-CR-185129, 1990.
    [4] Brandi V, Mingione G. Ice accretion prediction on multi-element airfoils[R]. AIAA-1997-0177, 1997.
    [5] Croce G, Beaugendre H, Habashi W G. CHT3D: FENSAP-ICE conjugate heat transfer computations with droplet impingement and runback effects[R]. AIAA-2002-0386, 2002.
    [6] Bartlett C S. An empirical look at tolerances in setting icing test conditions with particular application to icing similitude[R]. DOT/FAA/CT-87/31 and AEDC-TR-87-23, 1988.
    [7] Bragg M, Broeren A, Addy H, et al. Airfoil ice-accretion aerodynamics simulation[R]. AIAA-2007-85, 2007.
    [8] Cabler S J M. Aircraft ice protection[R]. FAA: AC20-73A, 2006.
    [9] 中国民用航空局.航空器型号合格审定程序: AP-21-AA-2011-03-R4[S].北京: 中国民用航空局航空器适航审定司, 2011.
    [10] Jones A R, Lewis W. Recommended values of meteorological factors to be considered in the design of aircraft ice-prevention equipment[R]. NACA-TN-1855, 1949.
    [11] Hacker P T, Dorsch R G. A summary of meteorological conditions associated with aircraft icing and a proposed method of selecting design criterions for ice-protection equipment[R]. NACA-TN-2569, 1951.
    [12] Lewis W, Bergrun N R. A probability analysis of the meteorological factors conductive to aircraft icing in the United States[R]. NACA-TN-2738, 1952.
    [13] Gent R W, Dart N P, Cansdale J T. Aircraft icing[J]. Phil Trans R Soc Lon A, 2000, 358:2873-2911. doi: 10.1098/rsta.2000.0689
    [14] 中国民用航空局.运输类飞机适航标准: CCAR-25-R4[S].北京: 中国民用航空局政策法规司, 2011.
    [15] Pellicano Paul. Supercooled large droplet (SLD) icing and certification of Part 23 airplanes[C]//Proc of the FAA 2009 Small Airplane Directorate Program Managers Meeting. 2009.
    [16] Broeren A P, Bragg M B. Effect of residual and intercycle ice accretions on airfoil performance[R]. DOT/FAA/AR-02/68, 2002.
    [17] Pellicano P. Residual and inter-cycle ice for lower-speed aircraft with pneumatic boots[R]. AIAA-2007-1090, 2007.
    [18] Rios M, Riley J T, Dumont C J. A study of intercycle, residual, and preactivation ice accretion[R]. AIAA-2001-0089, 2001.
    [19] Broeren A P, Bragg M B, Addy H E. Effect of intercycle ice accretions on airfoil performance[J]. Journal of Aircraft, 2004, 41(1):165-174. doi: 10.2514/1.1683
    [20] Addy H E, Potatpczuk M G, Sheldon D W. Modern airfoil ice accretions[R]. AIAA-97-0174, 1997.
    [21] Bragg M B, Broeren A P, Blumenthal L A. Iced-airfoil aero-dynamics[J]. Progress in Aerospace Sciences, 2005, 41:323-362. doi: 10.1016/j.paerosci.2005.07.001
    [22] Broeren A, Bragg M B. Effect of airfoil geometry on performance with simulated intercycle ice accretions[J]. Journal of Aircraft, 2005, 42(1):121-130. doi: 10.2514/1.4734
    [23] Sae Society of Automotive Engineers. Calibration and acceptance of icing wind tunnels: SAE ARP 5905-2003[S]. AC-9C Aircraft Icing Technology Committee, 2003.
    [24] Pellicano Paul. Guidance for new airplane icing certification projects[C]//Proc of the SAE 2007 Aircraft & Engine Icing International Conference. 2007.
    [25] Kind R J. Scaling of icing tests:a review of recent progress[J]. AIAA Journal, 2003, 41(8):1421-1428. doi: 10.2514/2.2120
    [26] Anderson D N. Rime-, mixed-and glaze-ice evaluations of three scaling laws[R]. AIAA-94-0718, 1994.
    [27] Anderson D N. Manual of scaling methods[R]. NASA/CR-2004-212875, 2004.
    [28] 中国民用航空局.正常类、实用类、特技类和通勤类飞机适航规定: CCAR-23-R3[S].北京: 中国民用航空局飞行标准司, 2005.
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  174
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-28
  • 修回日期:  2018-12-03
  • 刊出日期:  2019-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日