留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸气式飞行器高超声速风洞气动力试验技术研究进展

许晓斌 舒海峰 谢飞 王雄 郭雷涛

许晓斌, 舒海峰, 谢飞, 等. 吸气式飞行器高超声速风洞气动力试验技术研究进展[J]. 实验流体力学, 2018, 32(5): 29-40. doi: 10.11729/syltlx20180053
引用本文: 许晓斌, 舒海峰, 谢飞, 等. 吸气式飞行器高超声速风洞气动力试验技术研究进展[J]. 实验流体力学, 2018, 32(5): 29-40. doi: 10.11729/syltlx20180053
Xu Xiaobin, Shu Haifeng, Xie Fei, et al. Research progress on aerodynamic test technology of hypersonic wind tunnel for air-breathing aerocraft[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 29-40. doi: 10.11729/syltlx20180053
Citation: Xu Xiaobin, Shu Haifeng, Xie Fei, et al. Research progress on aerodynamic test technology of hypersonic wind tunnel for air-breathing aerocraft[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 29-40. doi: 10.11729/syltlx20180053

吸气式飞行器高超声速风洞气动力试验技术研究进展

doi: 10.11729/syltlx20180053
详细信息
    作者简介:

    许晓斌(1972-), 男, 四川泸州人, 研究员。研究方向:高超声速气动力与风洞试验技术、风洞天平技术。通信地址:四川省绵阳市二环路南段6号15信箱505分箱(621000)。E-mail:scmy-xxb@163.com

    通讯作者:

    许晓斌, E-mail: scmy-xxb@163.com

  • 中图分类号: V216.2

Research progress on aerodynamic test technology of hypersonic wind tunnel for air-breathing aerocraft

  • 摘要: 机体/推进一体化吸气式飞行器结构布局形式特殊,为精确获得其气动力特性风洞试验数据,必须发展可靠的风洞试验技术。针对一体化高超声速飞行器气动力风洞试验需求,在中国空气动力研究与发展中心的高超声速风洞上发展了吸气式飞行器通气模型测力试验技术、尾喷流模拟测力试验技术、铰链力矩测量试验技术、通气模型动导数测量试验技术和飞行器表面摩阻测量试验技术,为获得可靠的机体/推进一体化吸气式飞行器高超声速风洞气动力特性数据提供技术支撑。
  • 图  1  通气模型尾喷管处理与支撑方式示意图

    Figure  1.  Sketch of flow-through model nozzle reshaping and model support

    图  2  某外形马赫数6通气测力试验结果

    Figure  2.  Flow-through model test results of a configuration

    图  3  尾喷流模拟测力试验装置示意图

    Figure  3.  Sketch of a rear-jet simulation aerodynamic force test device

    图  4  密封影响对比试验结果

    Figure  4.  Test results of sealing interference comparative tests

    图  5  尾喷流作用影响对比试验结果

    Figure  5.  Comparison of test results of the rear-jet effects

    图  6  模型尾部及舵面布局示意图

    Figure  6.  Sketch of test model base and rudders

    图  7  改型后的模型尾部示意图

    Figure  7.  Sketch of modified structure of model base

    图  8  一体化舵面铰链力矩天平示意图

    Figure  8.  Sketch of hinge moment balance integrated with rudder

    图  9  不同工况试验数据对比

    Figure  9.  Comparison of different test conditions

    图  10  典型状态试验结果

    Figure  10.  Typical test results

    图  11  强迫振动试验装置结构简图

    Figure  11.  Sketch of a forced-oscillation dynamic derivative test

    图  12  通气模型俯仰动导数试验结果

    Figure  12.  Pitching dynamic derivative test results of a flow-through model

    图  13  通气模型偏航动导数试验结果

    Figure  13.  Yawing dynamic derivative test results of a flow-through model

    图  14  MEMS摩阻传感器总体结构与工作原理

    Figure  14.  Structure and principle of the MEMS skin-friction sensor

    图  15  MEMS摩阻传感器样机实物照片

    Figure  15.  Photos of the MEMS skin-friction sensors

    图  16  验证试验装置和风洞试验纹影照片

    Figure  16.  Test device in wind tunnle and schlichren photo of test

    图  17  重复性试验曲线

    Figure  17.  Output signals of repetitive tests

    表  1  带喷流测力试验结果重复性精度

    Table  1.   Repeatability accuracy of aerodynamic test data in jet-simulation tests

    精度 α/(°) CN/% CA/% Cm/%
    精度
    σα
    -4 0.21 0.03 0.05
    -2 0.15 0.03 0.10
    0 0.14 0.04 0.05
    2 0.28 0.04 0.11
    4 0.29 0.05 0.06
    6 0.36 0.05 0.12
    相对重复性精度
    σα/Cmax
    -4 0.43 0.25 0.08
    -2 0.32 0.26 0.17
    0 0.14 0.27 0.08
    2 0.30 0.35 0.19
    4 0.32 0.31 0.10
    6 0.59 0.36 0.20
    下载: 导出CSV

    表  2  试验自由来流参数

    Table  2.   Test parameters of free stream

    马赫数
    Ma
    总压pt
    /MPa
    总温Tt
    /K
    静压p
    /Pa
    动压q/Pa 单位雷诺数Re/L
    /m-1
    6 2.8 470 1773 44 690 2.61×107
    下载: 导出CSV

    表  3  某通气模型动导数试验重复性精度

    Table  3.   Data repeatability accuracy of a flow-through

    序号 通道 迎角
    1 俯仰 2.9% 6.9% 4.1%
    2 偏航 8.5% 3.1% 9.8%
    3 滚转 2.1% 11.2% 8.8%
    下载: 导出CSV

    表  4  传感器样机静态校准性能参数

    Table  4.   Static calibration results of MEMS skin-friction sensors

    样机 量程
    /Pa
    分辨率
    /Pa
    系数kc
    /(Pa·pF-1)
    重复性精度
    /%
    线性度
    /%
    1# 0~100 1 28.95 0.98 1.46
    2# 0~100 1 39.48 1.14 0.96
    3# 0~100 1 37.40 1.33 1.28
    4# 0~100 1 38.28 1.15 1.26
    6# 0~100 1 36.67 0.83 1.32
    7# 0~100 1 44.94 0.42 0.54
    9# 0~100 1 33.64 4.73 0.85
    下载: 导出CSV
  • [1] Holland S D, Woods W C, Engeluand W C. Hyper-X research vehicle experimental aerodynamics test program overview[J]. Journal of Spacecraft and Rockets, 2001, 38(6):828-835. doi: 10.2514/2.3772
    [2] Engeluand W C, Holland S D, Charles E C Jr. Aerodynamic datebase development for the Hyper-X airframe integrated scramjet propulsion experiments[R]. AIAA-2000-4006, 2000.
    [3] 罗金玲, 李超, 徐锦.高超声速飞行器机体/推进一体化设计的启示[J].航空学报, 2015, 36(1):39-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201501005

    Luo J L, Li C, Xu J. Inspiration of hypersonic vehicle with airframe/propulsion integrated design[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):39-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201501005
    [4] 吴颖川, 贺元元, 贺伟, 等.吸气式高超声速飞行器机体推进一体化技术研究进展[J].航空学报, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020

    Wu Y C, He Y Y, He W, et al. Progress in airframe-propulsion integration technology of airbreathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020
    [5] 恽起麟.实验空气动力学[M].北京:国防工业出版社, 1991.
    [6] 恽起麟.风洞试验[M].北京:国防工业出版社, 2002.
    [7] 许晓斌.常规高超声速风洞与试验技术[M].北京:国防工业出版社, 2015.
    [8] 赵忠良, 杨晓娟, 蒋卫民, 等.高超声速飞行器通流模拟方法与风洞验证技术[J].航空学报, 2014, 35(11):2932-2938. http://d.old.wanfangdata.com.cn/Periodical/hkxb201411004

    Zhao Z L, Yang X J, Jiang W M, et al. Through-flow simulation method and wind tunnel validation technique for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2932-2938. http://d.old.wanfangdata.com.cn/Periodical/hkxb201411004
    [9] 金亮, 柳军, 罗世彬, 等.高超声速一体化飞行器冷流状态气动特性研究[J].实验流体力学, 2010, 24(1):42-45. doi: 10.3969/j.issn.1672-9897.2010.01.008

    Jin L, Liu J, Luo S B, et al. Aerodynamic characterization of an integrated hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):42-45. doi: 10.3969/j.issn.1672-9897.2010.01.008
    [10] 吴军强, 徐明方, 张毅峰.带多个进气道的导弹通气模型测力试验技术研究[J].流体力学实验与测量, 2000, 14(3):52-56. doi: 10.3969/j.issn.1672-9897.2000.03.010

    Wu J Q, Xu M F, Zhang Y F. Force measurement test technique research of flow through model of the multi-inlet missile[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):52-56. doi: 10.3969/j.issn.1672-9897.2000.03.010
    [11] 张红英, 程克明, 伍贻兆.高超声速飞行器内流道流态及其对全机气动力影响的实验研究[J].空气动力学学报, 2009, 27(2):193-198. doi: 10.3969/j.issn.0258-1825.2009.02.009

    Zhang H Y, Cheng K M, Wu Y Z. Experimental study of flow characteristics and the influence for a hypersonic flight vehicle[J]. Acta Aerodynamica Sinica, 2009, 27(2):193-198. doi: 10.3969/j.issn.0258-1825.2009.02.009
    [12] Stephen M R, Ethiraj V, Earl R K, et al. Hypersonic single expansion ramp nozzle simulation[J]. Journal of Spacecraft and Rockets, 1992, 29(6):749-755. doi: 10.2514/3.25527
    [13] Hirschen C, Gülhan A, Beck W, et al. Experimental study of the interaction between internal and external flows of a scramjet nozzle using various diagnostic techniques[R]. AIAA-2007-5088, 2007.
    [14] Huebner L D, Witte D W, Andrews E H Jr. Exhaust simulation testing of a hypersonic air-breathing model at transonic speeds[R]. AIAA-2003-7001, 2003.
    [15] 贺旭照, 秦思, 曾学军, 等.模拟飞行条件下的吸气式高超声速飞行器后体尾喷流干扰问题实验方案研究[J].推进技术, 2014, 35(10):1310-1316. http://d.old.wanfangdata.com.cn/Conference/8358929

    He X Z, Qin S, Zeng X J, et al. Experiment scheme research on afterbody nozzle plume interference of air-breathing hyper-sonic vehicle fly condition[J]. Journal of Propulsion Technology, 2014, 35(10):1310-1316. http://d.old.wanfangdata.com.cn/Conference/8358929
    [16] 曾庆华, 黄琳, 夏智勋, 等.发动机喷流对飞行器飞行姿态影响的研究[J].宇航学报, 2002, 23(4):73-76. doi: 10.3321/j.issn:1000-1328.2002.04.015

    Zeng Q H, Huang L, Xia Z X, et al. The simulation of nozzle exhaust effects on aircraft's flight attitude[J]. Journal of Astronautics, 2002, 23(4):73-76. doi: 10.3321/j.issn:1000-1328.2002.04.015
    [17] 林敬周, 田正雨, 王志坚.三维高超声速底部喷流干扰流场数值模拟与试验研究[J].实验流体力学, 2006, 20(4):49-53. doi: 10.3969/j.issn.1672-9897.2006.04.009

    Lin J Z, Tian Z Y, Wang Z J. Numerical and experimental study of base jet interaction in hypersonic external flow[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4):49-53. doi: 10.3969/j.issn.1672-9897.2006.04.009
    [18] 孙振华, 吴催生, 徐东来.导弹尾流对后弹体影响的CFD仿真分析[J].弹箭与制导学报, 2011, 31(3):157-159, 168. doi: 10.3969/j.issn.1673-9728.2011.03.046

    Sun Z H, Wu C S, Xu D L. CFD study of the effect of rocket plume on thermal environment of aft-missile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(3):157-159, 168. doi: 10.3969/j.issn.1673-9728.2011.03.046
    [19] 司芳芳, 袁先旭, 李建强, 等.推力转向喷流与高速主流干扰参数影响规律的数值模拟研究[J].空气动力学学报, 2012, 30(5):583-591. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201205005

    Si F F, Yuan X X, Li J Q, et al. The study of parameters' infection between vectoring jet and high speed main flows interaction[J]. Acta Aerodynamica Sinica, 2012, 30(5):583-591. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201205005
    [20] 许晓斌, 舒海峰, 谢飞, 等.通气模型内流道阻力直接测量技术[J].推进技术, 2013, 34(3):311-315. http://d.old.wanfangdata.com.cn/Periodical/tjjs201303005

    Xu X B, Shu H F, Xie F, et al. Technique investigation on flow-through model inner-flow drag straightway measured by strain-gauge balance[J]. Journal of Propulsion Technology, 2013, 34(3):311-315. http://d.old.wanfangdata.com.cn/Periodical/tjjs201303005
    [21] 许晓斌, 舒海峰, 徐筠, 等.升力体飞行器尾喷流模拟气动力试验方法研究[J].空气动力学学报, 2016, 34(1), 86-90. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201601015

    Xu X B, Shu H F, Xu Y, et al. Experimental investigation on lifting body aerodynamic force with simulated aft-body jet[J]. Acta Aerodynamica Sinica, 2016, 34(1), 86-90. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201601015
    [22] 李周复.风洞特种试验技术[M].北京:航空工业出版社, 2010.
    [23] 熊琳, 刘展, 陈河梧.铰链力矩天平技术及其在高超声速风洞的应用研究[J].实验流体力学, 2007, 21(3):54-57. doi: 10.3969/j.issn.1672-9897.2007.03.011

    Xiong L, Liu Z, Chen H W. Hinge moment balance technique and application in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3):54-57. doi: 10.3969/j.issn.1672-9897.2007.03.011
    [24] 陈丽, 赵协和, 刘维亮, 等.提高测量最大铰链力矩试验数据精准度的有效模拟技术研究[J].流体力学实验与测量, 2002, 16(3):51-56. doi: 10.3969/j.issn.1672-9897.2002.03.009

    Chen L, Zhao X H, Liu W L, et al. Simulation technique for improving data precision and accuracy of maximum hinge moment test[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(3):51-56. doi: 10.3969/j.issn.1672-9897.2002.03.009
    [25] 刘绪, 赵云飞, 王东方, 等.高超声速内外流一体化飞行器动态特性[J].弹道学报, 2013, 25(3):38-43. doi: 10.3969/j.issn.1004-499X.2013.03.008

    Liu X, Zhao Y F, Wang D F, et al. Dynamic characteristics of hypersonic integrative vehicle with internal and external flow[J]. Journal of Ballistics, 2013, 25(3):38-43. doi: 10.3969/j.issn.1004-499X.2013.03.008
    [26] 唐志共.高超声速气动力试验[M].北京:国防工业出版社, 2004.
    [27] 袁先旭, 陈琦, 谢昱飞, 等.动导数数值预测中的相关问题[J].航空学报, 2016, 37(8):2385-2394. http://d.old.wanfangdata.com.cn/Periodical/hkxb201608005

    Yuan X X, Chen Q, Xie Y F, et al. Problems in numerical prediction of dynamic stability derivatives[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2385-2394. http://d.old.wanfangdata.com.cn/Periodical/hkxb201608005
    [28] 郭雷涛. Ф1米高超声速风洞动导数试验技术研究[D].绵阳: 中国空气动力研究与发展中心, 2013.

    Guo L T. Investigation on dynamic derivative test technique in Ф1m hypersonic wind tunnel[D]. Mianyang: China Aero-dynamics Research and Development Center, 2013.
    [29] 陈建中, 赵忠良, 范长海, 等. 2m量级高速风洞强迫振动动导数试验技术研究[J].空气动力学学报, 2016, 34(5):598-605. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201605009

    Chen J Z, Zhao Z L, Fan C H, et al. Forced-oscillation dynamic derivative test techniques in 2 meter scale high speed wind tunnels[J]. Acta Aerodynamica Sinica, 2016, 34(5):598-605. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201605009
    [30] 潘金柱, 张杰, 才义, 等.高速风洞动导数试验精准度提升研究[J].空气动力学学报, 2016, 34(5):606-610. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201605010

    Pan J Z, Zhang J, Cai Y, et al. Investigation on the high-speed wind tunnel dynamic derivative test accuracy promotion[J]. Acta Aerodynamica Sinica, 2016, 34(5):606-610. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201605010
    [31] Silvester T B, Morgan R G. Skin-friction measurements and flow establishment within a long duct at super orbital speeds[J]. AIAA Journal, 2008, 46(2):527-536. doi: 10.2514/1.32668
    [32] 吕治国, 李国君, 赵荣娟, 等.激波风洞高超声速摩阻直接测量技术研究[J].实验流体力学, 2013, 27(6):81-85. doi: 10.3969/j.issn.1672-9897.2013.06.015

    Lyu Z G, Li G J, Zhao R J, et al. Direct measurement of skin friction at hypersonic shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):81-85. doi: 10.3969/j.issn.1672-9897.2013.06.015
    [33] 马洪强, 高贺, 毕志献.高超声速飞行器相关的摩擦阻力直接测量技术[J].实验流体力学, 2011, 25(4):83-88. doi: 10.3969/j.issn.1672-9897.2011.04.016

    Ma H Q, Gao H, Bi Z X. Direct measurement of skin friction for hypersonic flight vehicle[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4):83-88. doi: 10.3969/j.issn.1672-9897.2011.04.016
    [34] Meloy J, Griffin J, Sells J, et al. Experimental verification of a MEMS based skin friction sensor for quantitative wall shear stress measurement[R]. AIAA-2011-3995, 2011.
    [35] 刘凯.金属基多梁圆盘式敏感质量加速度计相关技术研究[D].上海: 上海交通大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10248-1013003577.htm

    Liu K. Related techniques of micro-accelerometer based on metal and multi-beam disc mass[D]. Shanghai: Shanghai Jiaotong University, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10248-1013003577.htm
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  541
  • HTML全文浏览量:  198
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-12
  • 修回日期:  2018-07-23
  • 刊出日期:  2018-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日