留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光场三维重构和PSP的曲面压力测量技术

李浩天 许晟明 赵洲 张翰墨 施圣贤

李浩天, 许晟明, 赵洲, 等. 基于光场三维重构和PSP的曲面压力测量技术[J]. 实验流体力学, 2018, 32(3): 75-81. doi: 10.11729/syltlx20180036
引用本文: 李浩天, 许晟明, 赵洲, 等. 基于光场三维重构和PSP的曲面压力测量技术[J]. 实验流体力学, 2018, 32(3): 75-81. doi: 10.11729/syltlx20180036
Li Haotian, Xu Shengming, Zhao Zhou, et al. Curved surface pressure measurement based on light-field imaging and PSP[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 75-81. doi: 10.11729/syltlx20180036
Citation: Li Haotian, Xu Shengming, Zhao Zhou, et al. Curved surface pressure measurement based on light-field imaging and PSP[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 75-81. doi: 10.11729/syltlx20180036

基于光场三维重构和PSP的曲面压力测量技术

doi: 10.11729/syltlx20180036
基金项目: 

国家自然科学基金 11472175

国家自然科学基金 11772197

上海市启明星项目 15QA1402400

详细信息
    作者简介:

    李浩天(1994-), 男, 湖北襄樊人, 硕士研究生。研究方向:光场三维测试技术。通信地址:上海交通大学机械与动力工程学院。E-mail:lihaotiansky@sjtu.edu.cn

    通讯作者:

    施圣贤, E-mail:kirinshi@sjtu.edu.cn

  • 中图分类号: V211.71

Curved surface pressure measurement based on light-field imaging and PSP

  • 摘要: 光场单相机三维压力测量技术(LF-3DPSP)将光场三维成像技术和压敏漆(Pressure Sensitive Paint,PSP)技术结合,测量三维模型上的压力分布,为气动实验研究提供了一种全新的测量手段。LF-3DPSP采用与传统二维PSP技术相似的步骤,不同的是在试验阶段采用具有自主知识产权的光场相机硬件系统拍摄PSP图像和模型纹理图像,用于计算模型表面压力分布和模型三维结构尺寸。以截锥体为例,在Ma5的高超声速风洞中对该技术进行验证性试验研究。结果表明:LF-3DPSP技术能够精确测量大曲率模型的三维表面压力分布,且压力分布结果与纹影试验结果相匹配。
  • 图  1  LF-3DPSP算法流程示意图,其中柱状框表示处理环节,方框表示环节内具体的步骤,虚线框表示步骤所属算法

    Figure  1.  Flow chart of the image processing steps for the LF-3DPSP technique, columnar box means process part, square box means process detailed step and dotted lined box means the algorithm

    图  2  (a) Wind-on光场图像与红色方框区域放大图; (b) Wind-off光场图像与红色方框区域放大图;(c)带投影纹理的截锥体模型光场图像

    Figure  2.  Examples of (a) wind-on excitation light-field image and its zoom-in detail, (b) wind-off excitation image and its zoom-in detail and (c) dotted light-field image and its zoom-in detail for the truncated cone model

    图  3  (a) 一维光场示意图;(b)微透镜下CCD图像;(c)红色、蓝色像素和绿色集合分别表示形成的中心视角图像、中心最上方视角图像和中心最右边视角图像

    Figure  3.  Principle of the light field perspective shift algorithm (a) 1D schematic of the light-field camera, (b) sub-image of lenslet (showing only four lenslets here) and (c) artificially generated new perspective images (showing only the central, upper-most perspectives and right-most perspectives)

    图  4  光场相机拍摄带投影纹理三维模型图像

    Figure  4.  LF camera capture 3D texture model

    图  5  (a) EPI原理; (b) 3×3视角图像,红线表示同行像素;(c)图(b)中红线代表的EPI;(d)由EPI生成的视差图

    Figure  5.  (a) The principle of EPI, (b) horizontal line perspectives and same line pixel, (c) EPI from the red line in Figure (b), (d) disparity map

    图  6  局部放大后校准板的原始光场图像

    Figure  6.  Light-field image of the calibration board (zoom-in)

    图  7  (a) 模型深度尺寸; (b)计算结果与理论模型在模型中轴线上(y=35mm)的绝对误差分布

    Figure  7.  (a) Estimated 3D geometry and (b) 3D estimation absolute error along the central line (y=35mm)

    图  8  (a) 模型二维压力分布图;(b)模型轴线上相对压力分布;(c)模型纹影图像;(d)模型三维压力分布

    Figure  8.  (a) Measured 3D surface pressure distribution for the model, (b) pressure distribution along the central plane, (c) Schlieren image and (d) Measured 3D surface pressure distribution for the model

  • [1] Kavandi J, Callis J, Gouterman M, et al. Luminescent barometry in wind tunnels[J]. Rev sci instrum, 1990, 61(11):3340-3347. doi: 10.1063/1.1141632
    [2] Bell J H, Schairer E T, And L A H, et al. Surface pressure measurements using luminescent coatings1[J]. Annual Review of Fluid Mechanics, 2001, 33(1):155-206. doi: 10.1146/annurev.fluid.33.1.155
    [3] Liu T, Sullivan J P. Pressure and temperature sensitive paints[M]. Berlin:Springer, 2005.
    [4] 张永存, 陈柳生, 阎莉, 等.压敏涂料技术在风洞中的应用研究[J].实验流体力学, 2010, 24(1):74-78. doi: 10.3969/j.issn.1672-9897.2010.01.014

    Zhang Y C, Chen L S, Yan L, et al. Investigation and application of pressure sensitive paint technique in wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):74-78. doi: 10.3969/j.issn.1672-9897.2010.01.014
    [5] 李国帅, 周强, 刘祥, 等.压力敏感涂料特性及其校准技术实验研究[J].航空学报, 2013, 34(2):227-234. http://d.old.wanfangdata.com.cn/Periodical/hkxb201302004

    Li G S, Zhou Q, Liu X, et al. Experimental research of pressure sensitive paint performance and calibration technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):227-234. http://d.old.wanfangdata.com.cn/Periodical/hkxb201302004
    [6] 高丽敏, 吴亚楠, 胡小全, 等.基于光强的快速响应PSP动态测量技术及其应用[J].航空学报, 2014, 35(3):607-623. http://d.old.wanfangdata.com.cn/Periodical/hkxb201403002

    Gao L M, Wu Y N, Hu X Q, et al. Intensity-based fast response PSP technique and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):607-623. http://d.old.wanfangdata.com.cn/Periodical/hkxb201403002
    [7] 向星居, 熊红亮, 袁明磊, 等.快响应PSP技术用于高超声速圆柱绕流的非定常压力测量[J].实验流体力学, 2015, 29(3):54-61. http://www.syltlx.com/CN/abstract/abstract10844.shtml

    Xiang X J, Xiong H L, Yuan M L, et al. Unsteady pressure measurement around circular cylinder in hypersonic flows using fast response PSP[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):54-61. http://www.syltlx.com/CN/abstract/abstract10844.shtml
    [8] 林敬周, 解福田, 钟俊, 等.高超声速风洞压敏漆试验技术[J].航空学报, 2017, 38(7):187-195. http://d.old.wanfangdata.com.cn/Periodical/hkxb201707016

    Lin J Z, Xie F T, Zhong J, et al. Pressure sensitive paint test technique in hypersonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):187-195. http://d.old.wanfangdata.com.cn/Periodical/hkxb201707016
    [9] 熊健, 李国帅, 周强, 等. 2. 4m跨声速风洞压敏漆测量系统研制与应用研究[J].实验流体力学, 2016, 30(3):76-84. http://www.syltlx.com/CN/abstract/abstract10938.shtml

    Xiong J, Li G S, Zhou Q, et al. Development and application of pressure sensitive paint system in 2.4m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3):76-84. http://www.syltlx.com/CN/abstract/abstract10938.shtml
    [10] 熊红亮, 向星居, 郎卫东.压敏漆图像数据处理技术[J].实验流体力学, 2011, 25(2):77-82. doi: 10.3969/j.issn.1672-9897.2011.02.016

    Xiong H L, Xiang X J, Lang W D, et al. Image data processing techniques for pressure sensitive paint[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(2):77-82. doi: 10.3969/j.issn.1672-9897.2011.02.016
    [11] 高丽敏, 韦楠, 高杰, 等.基于内流场PSP测量技术的图像后处理[J].实验流体力学, 2013, 27(1):93-97. doi: 10.3969/j.issn.1672-9897.2013.01.017

    Gao L M, Wei N, Gao J, et al. Image processing of PSP technique in the internal flow[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(1):93-97. doi: 10.3969/j.issn.1672-9897.2013.01.017
    [12] Peng D, Liu Y Z. A grid-pattern PSP/TSP system for simultaneous pressure and temperature measurements[J]. Sensors & Actuators B Chemical, 2016, 222:141-150. http://www.sciencedirect.com/science/article/pii/S0925400515302483
    [13] 高丽敏, 高杰, 谢建, 等.图像三维重构在叶片表面压力测量的应用[J].工程热物理学报, 2012, 33(9):1523-1526. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204578276

    Gao L M, Gao J, Xie J, et al. Application of image 3D reconstruction to pressure measurement on blade surface[J]. Journal of Engineering Thermophysics, 2012, 33(9):1523-1526. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204578276
    [14] Engler R H, Klein C, Merlo E, et al. 360° PSP measurements in transonic flow[C]. 19th International Congress on Instrumentation in Aerospace Simulation Facilities, Gottingen, Germany, 2001. http://www.researchgate.net/publication/3920446_360_PSP_measurements_in_transonic_flow
    [15] Vardaki E, Stokes N, Patel S, et al. Pressure sensitive paint measurements on the gripen model at the ARA transonic wind tunnel[C]. AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2013.
    [16] Ng R. Digital light field photography[D]. Stanford: Stanford University, 2006.
    [17] Ding J F, Wang J H, Liu Y Z, et al. Dense ray tracing based reconstruction algorithm for light-field volumetric particle image velocimetry[C]. 7th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Melbourne, Australia, 2015
    [18] 丁俊飞, 施圣贤.基于光场成像原理的单相机三维流动测试技术[C].第十四届全国实验力学学术会议, 重庆, 2015

    Ding J F, Shi S X. Light field volumetric particle image velocimetry[C]. 14th National Conference on Experimental Mechanics, Chongqing, 2015.
    [19] Fahringer T W, Lynch K P, Thurow B S. Volumetric particle image velocimetry with a single plenoptic camera[J]. Measurement Science & Technology, 2015, 26(11):115201. http://www.ingentaconnect.com/content/iop/mst/2015/00000026/00000011/art115201
    [20] Shi S X, Wang J H, Ding J F, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement & Instrumentation, 2016, 49:70-88. http://www.sciencedirect.com/science/article/pii/S0955598616300371
    [21] 丁俊飞, 许晟明, 施圣贤.光场单相机三维流场测试技术[J].实验流体力学, 2016, 30(6):50-58. http://www.syltlx.com/CN/abstract/abstract10980.shtml

    Ding J F, Xu S M, Shi S X. Light field volumetric particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6):50-58. http://www.syltlx.com/CN/abstract/abstract10980.shtml
    [22] Shi S, Ding J, New T H, et al. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique[J]. Experiments in Fluids, 2017, 58(7):78. doi: 10.1007/s00348-017-2365-3
    [23] Li H, Ding J, Qu W, et al. Investigation of 3D flow behavior inside a rod bundle using Light Field-PIV and the matched refractive index techniques[C]. The International Symposium on Particle Image Velocimetry, Busan, Korea, 2017.
    [24] Xu S, Ding J, Zhao Z, et al. 3D flow measurements of circular air jet at Re=30, 000 using light field particle image velocimetry[C]. The International Symposium on Particle Image Velocimetry, 2017.
    [25] Shi S, Ding J, Atkinson C, et al. A detailed comparison of single-camera light-field PIV and tomographic PIV[J]. Experiments in Fluids, 2018, 59(3):46. doi: 10.1007/s00348-018-2500-9
    [26] Zhang S, Sheng H, Li C, et al. Robust depth estimation for light field via spinning parallelogram operator[J]. Computer Vision & Image Understanding, 2016, 145:148-159. http://dl.acm.org/citation.cfm?id=2903125
    [27] Jeon H G, Park J, Choe G, et al. Accurate depth map estimation from a lenslet light field camera[C]. Computer Vision and Pattern Recognition, IEEE, 2015. http://www.researchgate.net/publication/290436824_Accurate_Depth_Map_Estimation_from_a_Lenslet_Light_Field_Camera
    [28] Erdem E, Yang L, Kontis K. Drag Reduction Studies by Steady Energy Deposition at Mach 5[C]. AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2006. http://www.researchgate.net/publication/269129479_Drag_Reduction_Studies_by_Steady_Energy_Deposition_at_Mach_5
    [29] Ukai T, Zare-Behtash H, Kontis K, et al. Experimental investigation of surface flow pattern on truncated cones in Mach 5 flow:Influence of truncation ratio[J]. Experimental Thermal & Fluid Science, 2016, 81:396-405.
    [30] Erdem E. Active flow control studies at Mach 5: measurement and computation[D]. Manchester: University of Manchester, 2011. https://www.escholar.manchester.ac.uk/uk-ac-man-scw:140435
    [31] Yang L, Erdem E, Zare-Behtash H, et al. Pressure-sensitive paint on a truncated cone in hypersonic flow at incidences[J]. International Journal of Heat & Fluid Flow, 2012, 37(8):9-21. http://www.sciencedirect.com/science/article/pii/S0142727X12000677
    [32] Quinn M K, Spinosa E, Roberts D A. Miniaturisation of pressure-sensitive paint measurement systems using low-cost, miniaturised machine vision cameras[J]. Sensors, 2017, 17(8):1708. doi: 10.3390/s17081708
  • 加载中
图(8)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  189
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-09
  • 修回日期:  2018-04-16
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日