留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲燃烧风洞与常规高超声速风洞数据相关性研究

贺元元 吴颖川 张小庆 林其

贺元元, 吴颖川, 张小庆, 等. 脉冲燃烧风洞与常规高超声速风洞数据相关性研究[J]. 实验流体力学, 2018, 32(3): 64-68. doi: 10.11729/syltlx20180011
引用本文: 贺元元, 吴颖川, 张小庆, 等. 脉冲燃烧风洞与常规高超声速风洞数据相关性研究[J]. 实验流体力学, 2018, 32(3): 64-68. doi: 10.11729/syltlx20180011
He Yuanyuan, Wu Yingchuan, Zhang Xiaoqing, et al. Analysis of data correlation between combustion heated impulse facility and hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 64-68. doi: 10.11729/syltlx20180011
Citation: He Yuanyuan, Wu Yingchuan, Zhang Xiaoqing, et al. Analysis of data correlation between combustion heated impulse facility and hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 64-68. doi: 10.11729/syltlx20180011

脉冲燃烧风洞与常规高超声速风洞数据相关性研究

doi: 10.11729/syltlx20180011
详细信息
    作者简介:

    贺元元(1973-), 女, 上海人, 博士, 副研究员。研究方向:高超声速空气动力学。通信地址:四川省绵阳市二环路南段6号1901信箱(621000)。E-mail:hyy63713@126.com

    通讯作者:

    吴颖川, E-mail:wyclwx2007@126.com

  • 中图分类号: V211.73

Analysis of data correlation between combustion heated impulse facility and hypersonic wind tunnel

  • 摘要: 不同风洞因模拟来流参数不同,对高超声速飞行器气动力试验结果影响很大。总结了脉冲燃烧风洞和常规高超声速风洞不通气标模的试验和计算结果,分析了水凝结、雷诺数、壁温比对模型气动性能的影响规律。脉冲燃烧风洞获得的气动性能变化规律与常规高超声速风洞一致,脉冲燃烧风洞获得的阻力系数比常规高超声速风洞阻力系数大15%左右,其中雷诺数影响较小,在5%以内,壁温比影响较大,在10%以上。结合数值计算对造成差异的原因进行分析,认为壁面传热对边界层速度型的影响是主要因素。
  • 图  1  大不通气标模

    Figure  1.  Typical test model of large size

    图  2  小不通气标模

    Figure  2.  Typical test model of small size

    图  3  高超标模不同总温试验CA~α曲线

    Figure  3.  CA~α graph of different T0 tests for the typical hypersonic model

    图  4  高超标模不同总温试验CN~α曲线

    Figure  4.  CN~α graph of different T0 tests for the typical hypersonic model

    图  5  不通气标模轴向力系数计算和试验结果

    Figure  5.  Numerical and experimental axis force coefficients of the test model

    图  6  不通气标模法向力系数计算和试验结果

    Figure  6.  Numerical and experimental normal force coefficients of the test model

    图  7  CD~α试验与计算结果对比(脉冲风洞,总温1500K)

    Figure  7.  CD~α comparison of numerical and experimental results from Φ600mm combustion heated impulse facility

    图  8  CL~α试验与计算结果对比(脉冲风洞,总温1500K)

    Figure  8.  CL~α comparison of numerical and experimental results from Φ600mm combustion heated impulse facility

    图  9  CD~α试验与计算结果对比(常规高超声速风洞)

    Figure  9.  CD~α comparison of numerical and experimental results from Φ1m hypersonic wind tunnel

    图  10  CL~α试验与计算结果对比(常规高超声速风洞)

    Figure  10.  CL~α comparison of numerical and experimental results from Φ1m hypersonic wind tunnel

    图  11  CD~α计算与试验结果对比(脉冲燃烧风洞和常规高超声速风洞)

    Figure  11.  CD~α comparison of numerical and experimental results from combustion heated impulse facility and hypersonic wind tunnel

    表  1  不同总温高超标模试验参数

    Table  1.   Flow parameters of different T0 tests

    Ma p0/MPa T0/K p/Pa T/K Re
    6.0 4.5 1200 2368 162 7.08×106
    6.0 5.1 1500 2398 210 4.98×106
    6.0 5.8 1800 2374 263 3.61×106
    下载: 导出CSV

    表  2  试验参数

    Table  2.   Test parameters

    Facility Ma T0/K p0/MPa
    Φ2.4m CHIF 6 1575 4.76
    Φ600mm CHIF 6 1500 4.61
    下载: 导出CSV

    表  3  Φ1m常规高超声速风洞与Φ600mm脉冲燃烧风洞流场参数

    Table  3.   Test parameters of Φ1m hypersonic wind tunnel and Φ600mm combustion heated impulse facility

    Facility Ma p0/MPa T0/K γ Re Tratio
    Φ1m HWT 6.0 3.00 500 1.40 2.62×107 5.17
    Φ600mm CHIF 6.0 4.65 1560 1.36 4.10×106 1.49
    下载: 导出CSV
  • [1] Aeronautical and Space Engineering Board, National Research Council. Review of aeronautical wind tunnel facilities[R]. NASA-CR-183057, 1988.
    [2] Marion L, Laster, Dennis M B. A national study for hypersonic facility development[R]. AIAA-94-2473, 1994. http://www.researchgate.net/publication/269060570_A_national_study_for_hypersonic_facility_development
    [3] 战培国. 2025年美国的风洞试验展望[J].实验流体力学, 2010, 24(4):95-96. http://www.syltlx.com/CN/abstract/abstract9849.shtml

    Zhan P G. Prospect of wind tunnel testing of America in 2025[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4):95-96. http://www.syltlx.com/CN/abstract/abstract9849.shtml
    [4] Tirres C. The future of hypersonic wind tunnels[R]. AIAA-99-0819, 1999. doi: 10.2514/6.1999-819
    [5] 范洁川, 樊玉辰, 姚民柒, 等.世界风洞[M].北京:航空工业出版社, 1992.
    [6] 唐志共, 许晓斌, 杨彦广, 等.高超声速风洞气动力试验技术进展[J].航空学报, 2015, 36(1):86-97. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501008

    Tang Z G, Xu X B, Yang Y G, et al. Research progress on hypersonic wind tunnel aerodynamic testing techniques[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):86-97. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501008
    [7] 乐嘉陵, 刘伟雄, 贺伟, 等.脉冲燃烧风洞及其在火箭和超燃发动机研究中的应用[J].实验流体力学, 2005, 19(1):1-10. doi: 10.3969/j.issn.1672-9897.2005.01.001

    Le J L, Liu W X, He W, et al. Impulse combustion wind tunnel and its application in rocket and scramjet research[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1):1-10. doi: 10.3969/j.issn.1672-9897.2005.01.001
    [8] Le J L, Liu W X, He W, et al. Pulse combustion facility and its preliminary application in scramjet research[C]. 11th International Conference on Methods of Aerophysical Research, Novosibrisk, Russia, 2002.
    [9] 吴颖川, 贺元元, 贺伟, 等.吸气式高超声速飞行器机体推进一体化技术研究进展[J].航空学报, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020

    Wu Y C, He Y Y, He W, et al. Progress in a airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020
    [10] 贺元元, 贺伟, 张小庆, 等.燃烧加热脉冲风洞气动/推进一体化试验研究[J].推进技术, 2017, 38(8):1741-1746. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201708008.htm

    He Y Y, He W, Zhang X Q, et al. Aero-propulsion integration test in combustion heated impulse facility[J]. Journal of Propulsion Technology, 2017, 38(8):1741-1746. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201708008.htm
    [11] 贺伟, 高昌, 张小庆, 等.脉冲燃烧风洞测力天平研制与应用[J].实验流体力学, 2016, 30(4):66-70. http://www.syltlx.com/CN/abstract/abstract10953.shtml

    He W, Gao C, Zhang X Q, et al. Development and application of the force-measuring balance in impulse combustion wind tunnel tests[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4):66-70. http://www.syltlx.com/CN/abstract/abstract10953.shtml
    [12] 姜宏亮, 刘坤伟, 金熠, 等.污染组分对高超声速试验热力学参数影响研究[J].实验流体力学, 2015, 29(1):25-30. http://www.syltlx.com/CN/abstract/abstract10803.shtml

    Jiang H L, Liu K W, Jin Z, et al. An experimental investigation on the vitiation effects of hypersonic testing of aerothermal behaviors[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1):25-30. http://www.syltlx.com/CN/abstract/abstract10803.shtml
    [13] 程万, 罗喜胜, 杨基明.燃烧加热风洞中水蒸气相变的数值研究[J].空气动力学学报, 2010, 28(3):272-278. doi: 10.3969/j.issn.0258-1825.2010.03.006

    Cheng W, Luo X S, Yang J M. Numerical analysis of water phase transition effects in combustion-heated wind tunnels[J]. Acta Aerodynamic Sinica, 2010, 28(3):272-278. doi: 10.3969/j.issn.0258-1825.2010.03.006
    [14] 陈亮, 宋文艳, 罗飞腾. H2O/CO2污染对煤油燃料双模态超声速燃烧室影响研究[J].推进技术, 2015, 36(2):254-260. http://d.wanfangdata.com.cn/Periodical_tjjs201502013.aspx

    Chen L, Song W Y, Luo F T. Vitiation effects of H2O/CO2 on kerosene-fueled dual-mode supersonic combustor performance[J]. Journal of Propulsion Technology, 2015, 36(2):254-260. http://d.wanfangdata.com.cn/Periodical_tjjs201502013.aspx
    [15] 谭宇, 毛雄兵, 焦伟, 等.燃烧风洞不同模拟方式对超燃发动机性能影响试验研究[J].推进技术, 2017, 38(9):2062-2068. http://d.old.wanfangdata.com.cn/Periodical/tjjs201709018

    Tan Y, Mao X B, Jiao W, et al. Experimental investigation of effects of different simulation way of combustion heating wind tunnel on scramjet performance[J]. Journal Propulsion Technology, 2017, 38(9):2062-2068. http://d.old.wanfangdata.com.cn/Periodical/tjjs201709018
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  100
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-18
  • 修回日期:  2018-05-13
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日