留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲燃烧风洞与连续燃烧风洞数据相关性研究

吴颖川 贺元元 张小庆 林其 乐嘉陵

吴颖川, 贺元元, 张小庆, 等. 脉冲燃烧风洞与连续燃烧风洞数据相关性研究[J]. 实验流体力学, 2018, 32(3): 58-63. doi: 10.11729/syltlx20180008
引用本文: 吴颖川, 贺元元, 张小庆, 等. 脉冲燃烧风洞与连续燃烧风洞数据相关性研究[J]. 实验流体力学, 2018, 32(3): 58-63. doi: 10.11729/syltlx20180008
Wu Yingchuan, He Yuanyuan, Zhang Xiaoqing, et al. Analysis of data correlation between impulse and continuous combustion heated facilities[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 58-63. doi: 10.11729/syltlx20180008
Citation: Wu Yingchuan, He Yuanyuan, Zhang Xiaoqing, et al. Analysis of data correlation between impulse and continuous combustion heated facilities[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 58-63. doi: 10.11729/syltlx20180008

脉冲燃烧风洞与连续燃烧风洞数据相关性研究

doi: 10.11729/syltlx20180008
详细信息
    作者简介:

    吴颖川(1967-), 男, 四川广汉人, 博士, 研究员。研究方向:高超声速空气动力学。通信地址:四川省绵阳市二环路南段6号1901信箱(621000)。E-mail:wyclwx2007@126.com

    通讯作者:

    贺元元, E-mail:hyy63713@126.com

  • 中图分类号: V211.73

Analysis of data correlation between impulse and continuous combustion heated facilities

  • 摘要: 燃烧加热风洞是目前开展超燃冲压发动机地面模拟试验的主要设备。燃烧加热风洞的试验时间(脉冲式和连续式)及燃烧方式(氢-氧燃烧、碳氢-氧燃烧)均会对发动机试验结果产生一定影响。研究了氢-氧燃烧脉冲风洞与氢-氧燃烧连续风洞、酒精-氧气燃烧连续风洞的数据相关性。研究表明:对于同为氢-氧燃烧的脉冲风洞和连续风洞,在相同试验状态下,发动机推进流道压力系数分布规律一致,连续风洞试验的燃烧室压力高于脉冲风洞试验值,连续风洞的发动机推力收益比脉冲风洞高10%左右;对于氢-氧燃烧脉冲风洞和酒精-氧气燃烧连续风洞,发动机推进流道压力系数分布规律一致,连续风洞试验的燃烧室压力高于脉冲风洞试验值,连续风洞的发动机推力收益比脉冲风洞高5%左右。
  • 图  1  Ma=5.5、α=2.5°压力系数分布

    Figure  1.  Pressure coefficient distribution at Ma=5.5 and α=2.5°

    图  2  Ma=5.5、α=4.5°压力系数分布

    Figure  2.  Pressure coefficient distribution at Ma=5.5 and α=4.5°

    图  3  Ma=5.5、α=6.5°压力系数分布

    Figure  3.  Pressure coefficient distribution at Ma=5.5 and α=6.5°

    图  4  Ma=5.5推力收益曲线

    Figure  4.  Gain in thrust of Ma=5.5

    图  5  Ma=6.0、α=2.5°压力系数分布

    Figure  5.  Pressure coefficient distribution at Ma=6.0 and α=2.5°

    图  6  Ma=6.0、α=4.5°压力系数分布

    Figure  6.  Pressure coefficient distribution at Ma=6.0 and α=4.5°

    图  7  Ma=6.0、α=6.5°压力系数分布

    Figure  7.  Pressure coefficient distribution at Ma=6.0 and α=6.5°

    图  8  Ma=6.0推力收益曲线

    Figure  8.  Gain in thrust of Ma=6.0

    图  9  Ma=6.5、α=2.5°压力系数分布

    Figure  9.  Pressure coefficient distribution at Ma=6.5 and α=2.5°

    图  10  Ma=6.5、α=4.5°压力系数分布

    Figure  10.  Pressure coefficient distribution at Ma=6.5 and α=4.5°

    图  11  Ma=6.5、α=6.5°压力系数分布

    Figure  11.  Pressure coefficient distribution at Ma=6.5 and α=6.5°

    图  12  Ma=6.5推力收益曲线

    Figure  12.  Gain in thrust of Ma=6.5

    图  13  Ma=6.0压力系数分布对比曲线

    Figure  13.  Comparison of pressure coefficient distribution at Ma=6.0

    表  1  对比试验参数

    Table  1.   Comparison test parameters

    Ma H/km T0/K p0/MPa q/kPa
    5.5 26 1350 2.5 43.1
    6.0 27 1550 4.0 46.9
    6.5 28 1700 6.2 47.1
    下载: 导出CSV
  • [1] Tirres C, Bradley M, Morrison C. A flow quality analysis for future hypersonic vehicle testing[R]. AIAA-2002-2706, 2002. http://www.researchgate.net/publication/268559846_A_Flow_Quality_Analysis_for_Future_Hypersonic_Vehicle_Testing_Invited
    [2] Boyce R R, Paull A, Stalker R J, et al. Comparison of supersonic combustion between impulse and vitiation-heated facilities[J]. Journal of Propulsion and Power, 2000, 16(4):709-717. doi: 10.2514/2.5631
    [3] Mitani T, Hiraiwa T, Sato S, et al. Comparison of scramjet engine performance in mach 6 vitiated and storage-heated air[J]. Journal of Propulsion and Power, 1997, 13(5):635-642. doi: 10.2514/2.5228
    [4] Rockwell R D, Goyne C P, Haw W, et al. Experimental study of test-medium vitiation effects on dual-mode scramjet performance[J]. Journal of Propulsionand Power, 2011, 27(5):1135-1142. doi: 10.2514/1.B34180
    [5] Krauss R H, Gauba G, Whitehurst R B, et al. Experimental and numerical investigation on steam-vitiated supersonic hydrogen combustion[R]. AIAA-96-0856, 1996. http://www.researchgate.net/publication/269214915_Experimental_and_numerical_investigation_on_steam-vitiated_supersonic_hydrogen_combustion
    [6] Haw W L, Goyne C P, Rockwell R D, et al. Experimental study of vitiation effects on scramjet mode transition[J]. Journal of Propulsion and Power, 2011, 27(2):506-508. doi: 10.2514/1.49090
    [7] McDaniel J C, Krauss R H, Whitehurst W B, et al. Test gas vitiation effects in a dual-mode combustor[R]. AIAA-2003-6960, 2003. doi: 10.2514/6.2003-6960
    [8] Goyne C P, McDaniel Jr, Krauss R H, et al. Test gas vitiation effects in a dual-mode scramjet combustor[J]. Journal of Propulsion and Power, 2007, 23(3):559-565. doi: 10.2514/1.24663
    [9] Rockwell R D, Goyne C P, Haw W L, et al. Experimental study of test medium vitiation effects on dual-mode scramjet mode transition[R]. AIAA-2010-1126, 2010. doi: 10.2514/6.2010-1126
    [10] Srinivasan S, Erickson W D. Interpretation of vitiation effects on testing at mach 7 flight conditions[R]. AIAA-95-2719, 1995. http://www.researchgate.net/publication/269059233_Interpretation_of_vitiation_effects_on_testing_at_Mach_7_flight_conditions
    [11] 王磊, 宋文艳, 罗飞腾. H2O组分对氢燃料超音速燃烧室性能的影响[J].航空工程进展, 2010, 1(2):159-163. doi: 10.3969/j.issn.1674-8190.2010.02.013

    Wang L, Song W Y, Luo F T. Research on the effects of H2O contaminant on hydrogen-fueled supersonic combustor performance[J]. Advances in Aeronautical Science and Engineering, 2010, 1(2):159-163. doi: 10.3969/j.issn.1674-8190.2010.02.013
    [12] 张志强, 宋文艳, 罗飞腾. H2O/CO2组分对氢和乙烯超声速燃烧室性能影响数值模拟[J].西北工业大学学报, 2012, 30(2):256-261. doi: 10.3969/j.issn.1000-2758.2012.02.020

    Zhang Z Q, Song W Y, Luo F T. Numerical investigation of effects of H2O/CO2 vitiation on performance of hydrogen and ethylene supersonic combustors[J]. Journal of Northwestern Polytechnical University, 2012, 30(2):256-261. doi: 10.3969/j.issn.1000-2758.2012.02.020
    [13] Luo F T, Song W Y, Zhang Z Q, et al. Experimental and numerical studies of vitiated air effects on hydrogen-fueled supersonic combustor performance[J]. Chinese Journal of Aeronautics, 2012, 25(2):164-172. doi: 10.1016/S1000-9361(11)60375-0
    [14] 陈亮, 宋文艳, 罗飞腾. H2O/CO2污染对煤油燃料双模态超声速燃烧室影响研究[J].推进技术, 2015, 36(2):253-260. http://d.wanfangdata.com.cn/Periodical_tjjs201502013.aspx

    Chen L, Song W Y, Luo F T. Vitiation effects of H2O/CO2 on kerosene-fueled dual-mode supersonic combustor performance[J]. Journal of Propulsion Technology, 2015, 36(2):253-260. http://d.wanfangdata.com.cn/Periodical_tjjs201502013.aspx
    [15] 刘伟雄, 杨阳, 邵菊香, 等.空气污染组分H2O和CO2对乙烯燃烧性能的影响[J].物理化学学报, 2009, 25(8):1618-1622. doi: 10.3866/PKU.WHXB20090809

    Liu W X, Yang Y, Shao J X, et al. Influence of H2O and CO2 contamination in air on the combustion properties of ethylene[J]. Acta Physico-Chimica Sinica, 2009, 25(8):1618-1622. doi: 10.3866/PKU.WHXB20090809
    [16] 刘伟雄, 贺伟, 李宏斌, 等.污染组分对氢燃料发动机燃烧动力学的影响[J].科学通报, 2008, 53(18):2257-2260. doi: 10.3321/j.issn:0023-074X.2008.18.017
    [17] 侯凌云, 杨缙, 马雪松, 等.空气污染各组分对甲烷超声速燃烧性能的影响[J].物理化学学报, 2010, 26(12):3150-3156. doi: 10.3866/PKU.WHXB20101204

    Hou L Y, Yang J, Ma X S, et al. Effects of Species in vitiation air on methane-fueled supersonic combustion[J]. Acta Physico-Chimica Sinica, 2010, 26(12):3150-3156. doi: 10.3866/PKU.WHXB20101204
    [18] 谭宇, 毛雄兵, 焦伟, 等.燃烧风洞不同模拟方式对超燃发动机性能影响试验研究[J].推进技术, 2017, 38(9):2062-2068. http://d.old.wanfangdata.com.cn/Periodical/tjjs201709018

    Tan Y, Mao X B, Jiao W, et al. Experimental investigation of effects of different simulation way of combustion heating wind tunnel on scramjet performance[J]. Journal Propulsion Technology, 2017, 38(9):2062-2068. http://d.old.wanfangdata.com.cn/Periodical/tjjs201709018
    [19] 乐嘉陵, 刘伟雄, 贺伟, 等.脉冲燃烧风洞及其在火箭和超燃发动机研究中的应用[J].实验流体力学, 2005, 19(1):1-10. doi: 10.3969/j.issn.1672-9897.2005.01.001

    Le J L, Liu W X, H W, et al. Impulse combustion wind tunnel and its application in rocket and scramjet research[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1):1-10. doi: 10.3969/j.issn.1672-9897.2005.01.001
    [20] Le J L, Liu W X, He W, et al. Pulse combustion facility and its preliminary application in scramjet research[C]. 11th International Conference on Methods of Aerophysical Research, Novosibrisk, Russia, 2002.
    [21] 吴颖川, 贺元元, 贺伟, 等.吸气式高超声速飞行器机体推进一体化技术研究进展[J].航空学报, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020

    Wu Y C, He Y Y, He W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020
    [22] 贺元元, 贺伟, 张小庆, 等.燃烧加热脉冲风洞气动/推进一体化试验研究[J].推进技术, 2017, 38(8):1741-1746. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201708008.htm

    He Y Y, He W, Zhang X Q, et al. Aero-propulsion integration test in combustion heated impulse facility[J]. Journal of Propulsion Technology, 2017, 38(8):1741-1746. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201708008.htm
    [23] 贺伟, 高昌, 张小庆, 等.脉冲燃烧风洞测力天平研制与应用[J].实验流体力学, 2016, 30(4):66-70. http://www.syltlx.com/CN/abstract/abstract10953.shtml

    He W, Gao C, Zhang X Q, et al. Development and application of the force-measuring balance in impulse combustion wind tunnel tests[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4):66-70. http://www.syltlx.com/CN/abstract/abstract10953.shtml
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  100
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-18
  • 修回日期:  2018-04-08
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日