留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快速响应压敏涂料测试技术与应用

于靖波 向星居 熊红亮 黄湛 赵学军

于靖波, 向星居, 熊红亮, 等. 快速响应压敏涂料测试技术与应用[J]. 实验流体力学, 2018, 32(3): 17-32. doi: 10.11729/syltlx20180007
引用本文: 于靖波, 向星居, 熊红亮, 等. 快速响应压敏涂料测试技术与应用[J]. 实验流体力学, 2018, 32(3): 17-32. doi: 10.11729/syltlx20180007
Yu Jingbo, Xiang Xingju, Xiong Hongliang, et al. Measurements and applications of fast response pressure sensitive paint[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 17-32. doi: 10.11729/syltlx20180007
Citation: Yu Jingbo, Xiang Xingju, Xiong Hongliang, et al. Measurements and applications of fast response pressure sensitive paint[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 17-32. doi: 10.11729/syltlx20180007

快速响应压敏涂料测试技术与应用

doi: 10.11729/syltlx20180007
详细信息
    作者简介:

    于靖波(1991-), 男, 内蒙古通辽人, 工程师。研究方向:流场测试技术。通信地址:北京市丰台区云岗西路17号(100074)。E-mail:yujingbo0110@126.com

    通讯作者:

    向星居, E-mail:15901287499@126.com

  • 中图分类号: V211.7

Measurements and applications of fast response pressure sensitive paint

  • 摘要: 近年来快速响应压敏涂料测试技术发展迅速。对该技术在国内外的发展及其应用进行详细调研的基础上展开了全面的综述。首先描述了快响应压敏漆测试技术的特点、工作原理及其动态响应机理。然后详述了目前普遍应用的3种多孔结构快响应压敏涂料包括TLC-PSP、AA-PSP和PC-PSP。详细介绍了不同的动态标定设备,包括激波管、电磁阀、驻波管、射流振荡器和脉冲射流装置。归纳了几种主要的测量方法,包括点测量方法,相位平均法,高速图像采集法,双分量运动捕获方法,单次激发寿命法和颗粒法等。引用国内外快速响应PSP技术的典型应用案例,展示了快速响应PSP技术对非定常流动测量的优势。
  • 图  1  AA-PSP结构示意图及电镜扫描结果[19]

    Figure  1.  Schematic illustrations and scanning electron micrographs of AA-PSP[19]

    图  2  PC-PSP结构示意图及电镜扫描结果

    Figure  2.  Schematic illustrations and scanning electron micrographs of PC-PSP

    图  3  PSP激波管响应时间测试示意图

    Figure  3.  Schematic illustrations of the shock tube for determining the PSP time response

    图  4  多孔Ru类PSP时间响应对比[40]

    Figure  4.  Comparison of the time response of porous Ru(dpp)-based PSP[40]

    图  5  电磁阀压力突变装置示意图

    Figure  5.  Schematic of a pressure jump apparatus

    图  6  PSP在压力阶跃中的时间响应[35]

    Figure  6.  Time response of PSPs to a step change in pressure (a) kulite sensor (reference), (b) GP197-PSP, (c) AA-PSP, and (d) poly(TMSP)-PSP[35]

    图  7  针对运动捕获的双分量PSP系统示意图[71]

    Figure  7.  Schematic illustrating the motion-capturing PSP method[71]

    图  8  单次激发寿命法

    Figure  8.  Schematic of the single-shot lifetime method

    图  9  基于AA-PSP测量得到的高频微尺度射流振荡结果[84]

    Figure  9.  AA-PSP measurements of a microscale fluidic oscillator flow [84]

    图  10  平板横向喷流特征点功率谱,喷孔直径d=4.76mm,喷流压力p=703kPa[85]

    Figure  10.  Pressure fluctuations and amplitude of the power spectrum at the four indicated locations for the 4.76mm-diameter injector block operating at pinj=703kPa[85]

    图  11  圆柱绕流非定常压力变化过程前20ms图像,Ma=5,采集频率250 frames/s

    Figure  11.  The first 20ms image of unsteady pressure behavior around the cylinder, f=250 frames/s, Ma=5

    图  12  直升机叶片前进(a)和后退(b)表面压力分布测量结果[90]

    Figure  12.  Pressure distributions on the advancing blade and retreating blade of a helicopter[90]

    图  13  PSP单次激发寿命法系统[91]

    Figure  13.  Single-shot lifetime based system for PSP measurements on turbocharger compressor[91]

    图  14  叶片表面压力分布, (a) n=20kr/min, (b) n=40kr/min, (c) n=60kr/min, (d) n=80kr/min[91]

    Figure  14.  Blade pressure fields at (a) n=20kr/min, (b) n=40kr/min, (c) n=60kr/min, (d) n=80kr/min[91]

    图  15  AA-PSP模型表面的压力分布(a)和温度分布(b)[92]

    Figure  15.  Pressure map (a) and temperature map (b) of an AA-TSP model[92]

    图  16  PSP测量结果功率谱(α=-1.5°,x/c=0,y/c=0.9)[53]

    Figure  16.  Result of the PSP power spectrum, (a) high-speed imaging, (b) point measurement[53]

    图  17  原瞬态压力场图像,采样频率1kHz[93]

    Figure  17.  Instantaneous pressure fluctuations, 1kHz[93]

    图  18  基于POD方法重构出的压力场图像,采样频率1kHz[93]

    Figure  18.  Instantaneous pressure fluctuations reconstructed from selected POD modes, 1kHz[93]

    图  19  压缩拐角压力分布云图,30°拐角

    Figure  19.  Pressure distribution on the compression corner model at the angle of 30°

    图  20  前1.5ms中心线和对应的压力孔数据对比

    Figure  20.  PSP data compared to PSI data on center line in 1.5ms

    图  21  不同标定方法叶片表面压力和传感器对比情况[96]

    Figure  21.  Comparison of PSP data calibrated using the a priori calibration, (a) with an assumed temperature and the hybrid calibration (b) using the pressure transducers[96]

    图  22  尾舵数值模拟(a)和PSP(b)结果对比图(Ma=1.0,α=0°)

    Figure  22.  Comparison of numerical solution result and PSP result on the rudder, Ma=1.0, α=0°

    图  23  舵前缘某测点压力数据随迎角变化对比,Ma=1.0,α=0°,-6°,-12°

    Figure  23.  Comparison of the pressure data at different angles of attack on the rudder, Ma=1.0, α=0°, -6°, -12°

    图  24  弹身某测点PSP和Kulite无量纲功率谱对比,Ma=0.8,α=0°

    Figure  24.  Comparison of the PSP and the Kulite transducer spectrum on the missile body, Ma=0.8, α=0°

    表  1  不同动态标定方法对比[3]

    Table  1.   Comparison of different dynamic calibration methods[3]

    标定方法 时间尺度(ΔT)/μs 压力变化尺度(Δp)/105Pa
    激波管 1 1.000
    电磁阀 1 1.000
    驻波管 10 0.012
    激波发生器 200 1.000
    脉冲式喷流 667 2.500
    射流振荡器 25 1.000
    下载: 导出CSV
  • [1] Liu T, Sullivan J P. Pressure and temperature sensitive paints[M]. Berlin:Springer, 2005.
    [2] 陈柳生, 周强, 金喜高, 等.压力敏感涂料及其测试技术[J].航空学报, 2009, 30(12):2435-2448. doi: 10.3321/j.issn:1000-6893.2009.12.029

    Chen L S, Zhou Q, Jin X G, et al. Pressure sensitive paint and its measuring technique[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12):2435-2448. doi: 10.3321/j.issn:1000-6893.2009.12.029
    [3] Gregory J W, Asai K, Kameda M, et al. A review of pressure-sensitive paint for high-speed and unsteady aerodynamics[J]. Proc IMechE G J Aerosp Eng, 2008, 222(2):249-90. doi: 10.1243/09544100JAERO243
    [4] Gregory J W, Sakaue H, Liu T, et al. Fast pressure-sensitive paint for flow and acoustic diagnostics[J]. Annu Rev Fluid Mech, 2014, 46(1):303-30. doi: 10.1146/annurev-fluid-010313-141304
    [5] Engler R H, Klein C, Merlo E, et al. 360 degree PSP measurements in transonic flow[C]. 19th International Congress on Instrumentation in Aerospace Simulation Facilities, Cleveland, Ohio, 2001. http://www.researchgate.net/publication/3920446_360_PSP_measurements_in_transonic_flow
    [6] Pervushin G E, Nevsky L B. Composition for indicating coatin[P]. Russian: USSR-SU 1065452, 1981.
    [7] Gouterman M, Callis J, Burns D, et al. Luminescence imaging for aerodynamic testing[C]. ONR/NASA Workshop on Quantitative Flow Visualization, Purdue University, West Lafayette, IN, USA, 1990.
    [8] Davies A G, Bedwell D, Dunleavy M, et al. Pressure sensitive paint measurements using a phosphorescence lifetime method[C]. Seventh International Symposium on Flow Visualization, Seattle, Washington, 1995.
    [9] Carroll B F, Abbitt J D, Lukas E W, et al. Step response of pressure sensitive paints[J]. AIAA Journal, 1996, 34(3):521-526. doi: 10.2514/3.13099
    [10] Winslow N A, Carroll B F, Kurdila A J. Model development and analysis of the dynamics of pressure-sensitive paints[J]. AIAA Journal, 2001, 39(4):660-666. doi: 10.2514/2.1359
    [11] Gregory J W, Sullivan J P. Effect of quenching kinetics on unsteady response of pressure-sensitive paint[J]. AIAA Journal, 2006, 44(3):634-645. doi: 10.2514/1.15124
    [12] Kameda M. Effect of luminescence lifetime on the frequency response of fast-response pressure-sensitive paints[J]. Trans Jpn Soc Mech Eng B, 2012, 78(795):1942-1950. doi: 10.1299/kikaib.78.1942
    [13] McMullen R M, Huynh D P, Gregory J W, et al. Dynamic calibrations for fast-response porous polymer/ceramic pressure-sensitive paint[C]. AIAA Ground Test, San Diego, CA, 2013. doi: 10.2514/6.2013-3123
    [14] Schairer E T. Optimum thickness of pressure-sensitive paint for unsteady measurements[J]. AIAA Journal, 2002, 40(11):2312-2318. doi: 10.2514/2.1568
    [15] Sakaue H, Sullivan J P. Time response of anodized aluminum pressure-sensitive paint[J]. AIAA Journal, 2001, 39(10):1944-1949. doi: 10.2514/2.1184
    [16] Liu T, Teduka N, Kameda M, et al. Diffusion timescale of porous pressure-sensitive paint[J]. AIAA Journal, 2001, 39(12):2400-2402. doi: 10.2514/2.1249
    [17] Kameda M, Tabei T, Nakakita K, et al. Image measurements of unsteady pressure fluctuation by a pressure-sensitive coating on porous anodized aluminum[J]. Meas Sci Technol, 2005, 16(12):2517-2574. doi: 10.1088/0957-0233/16/12/017
    [18] Gregory J W, Sullivan J P, Wanis S S, et al. Pressure-sensitive paint as a distributed optical microphone array[J]. Acoust Soc Am, 2006, 119(1):251-261. doi: 10.1121/1.2140935
    [19] Baron A E, Danielson J D S, Gouterman M, et al. Submillisecond response times of oxygen-quenched luminescent coatings[J]. Rev Sci Instrum, 1993, 64(12):3394-3402. doi: 10.1063/1.1144310
    [20] Sakaue H, Gregory J W, Sullivan J P, et al. Porous pressure-sensitive paint for characterizing unsteady flowfields[J]. AIAA Journal, 2002, 40(6):1094-1098. http://www.researchgate.net/publication/245425422_Porous_Pressure-Sensitive_Paint_for_Characterizing_Unsteady_Flowfields
    [21] Sakamura Y, Matsumoto M, Suzuki T. High frame-rate imaging of surface pressure distribution using a porous pressure-sensitive paint[J]. Meas Sci Technol, 2005, 16(3):759-765. doi: 10.1088/0957-0233/16/3/019
    [22] Gongora-Orozco N, Zare-Behtash H, Kontis K. Global unsteady pressure-sensitive paint measurements of a moving shock wave using thin-layer chromatography[J]. Measurement, 2010, 43(1):152-155. doi: 10.1016/j.measurement.2009.06.011
    [23] Sakaue H, Tabei T, Kameda M. Hydrophobic monolayer coating on anodized aluminum pressure sensitive paint[J]. Sens Actuators B, 2006, 119(2):504-511. doi: 10.1016/j.snb.2006.01.010
    [24] Zare-Behtash H, Yang L, Gongora-Orozco N, et al. Anodized aluminium pressure sensitive paint:effect of paint application technique[J]. Measurement, 2012, 45(7):1902-1905. doi: 10.1016/j.measurement.2012.03.015
    [25] Sakaue H, Morita K, Iijima Y, et al. Response time scales of anodized-aluminum pressure sensitive paints[J]. Sens Actuators A, 2013, 199(9):74-79. http://www.sciencedirect.com/science/article/pii/S0924424713002057
    [26] Ponomarev S, Gouterman M. Fast responding pressure sensitive paints based on high concentration of hard particles in polymer[C]. Proceedings of the Sixth Annual Pressure Sensitive Paint Workshop, The Boeing Company, Seattle, Washington, 1998.
    [27] Scroggin A M. Processing and optimization of luminescence based pressure and temperature sensors for aerodynamic applications[D]. Purdue University, 1999.
    [28] Gregory J W, Sullivan J P, Wanis S S, et al. Pressure-sensitive paint as a distributed optical microphone array[J]. Acoust Soc Am, 2006, 119(1):251-261. doi: 10.1121/1.2140935
    [29] Sakaue H, Kakisako T, Ishikawa H. Characterization and optimization of polymer-ceramic pressure sensitive paint by controlling polymer content[J]. Sensors, 2011, 11(7):6967-6977. doi: 10.3390/s110706967
    [30] Scroggin A M, Slamovich E B, Crafton J W, et al. Porous polymer/ceramic composites for luminescent-based temperature and pressure measurement[J]. Mater Res Soc Proc, 1999, 560:347-352. doi: 10.1557/PROC-560-347
    [31] Juliano T J, Disotell K J, Gregory J W, et al. Motion-deblurred, fast-response pressure sensitive paint on a rotor in forward flight[J]. Meas Sci Technol, 2012, 23(23):045303. http://www.ingentaconnect.com/content/iop/mst/2012/00000023/00000004/art045303
    [32] Sugimoto T, Kitashima S, Numata D, et al. Characterization of frequency response of pressure sensitive paints[R]. AIAA-2012-1185, 2012. http://www.researchgate.net/publication/269052314_Characterization_of_Frequency_Response_of_Pressure-Sensitive_Paints
    [33] Gregory J W, Sakaue H, Sullivan J P. Fluidic oscillator as a dynamic calibration tool[R]. AIAA-2002-2701, 2002. http://www.researchgate.net/publication/268559847_Fluidic_Oscillator_as_a_Dynamic_Calibration_Tool?ev=auth_pub
    [34] Kameda M, Seki H, Makoshi T, et al. A fast-response pressure sensor based on a dye-adsorbed silica nanoparticle film[J]. Sens Actuators B, 2012, 171-172(9):343-349. http://www.sciencedirect.com/science/article/pii/S0925400512004091/pdf?md5=4e1c449e27cbdbb762e49b7b9f369275&pid=1-s2.0-S0925400512004091-main.pdf&_valck=1
    [35] Asai K, Amao Y, Iijima Y, et al. Novel pressure-sensitive paint for cryogenic and unsteady wind-tunnel testing[J]. Thermophys Heat Transf, 2002, 16(1):109-115. doi: 10.2514/2.6658
    [36] Asai K, Nakakita K, Kameda M, et al. Recent topics in fast-responding pressure-sensitive paint technology at National Aerospace Laboratory[C]. Proc 19th Int Congr Instrum Aerosp Simul Facil, Piscataway, 2001.
    [37] Amao Y, Okura I, Shinohara H, et al. An optical sensing material for trace analysis of oxygen:metalloporphyrin dispersed in poly(1-trimethylsilyl-1-propyne) film[J]. Polym Journal, 2002, 34(34):411-417. http://www.nature.com/pj/journal/v34/n6/abs/pj200263a.html
    [38] Kameda M, Tezuka N, Hangai T, Asai K, et al. Adsorptive pressure-sensitive coatings on porous anodized aluminum[J]. Meas Sci Technol, 2004, 15(3):489-500. doi: 10.1088/0957-0233/15/3/001
    [39] Pastuhoff M, Tillmark N, Alfredsson P H. 2010. Dynamic calibration of polymer/ceramic pressure sensitive paint using a shock tube[C]. Proc 7th Int Conf Flow Dyn, Sendai, 2010.
    [40] Fujii S, Numata D, Nagai H, et al. Development of ultrafast-response anodized-aluminum pressure-sensitive paints[R]. AIAA-2013-0485, 2013. http://www.researchgate.net/publication/268468032_Development_of_Ultrafast-Response_Anodized-Aluminum_Pressure-Sensitive_Paints
    [41] Winslow N A, Carroll B F, Kurdila A J. Model development and analysis of the dynamics of pressure sensitive paints[J]. AIAA Journal, 2001, 39(4):660-666. doi: 10.2514/2.1359
    [42] Merienne M C, Coponet D, Luyssen J M. Transient pressure-sensitive paint investigation in a nozzle[J]. AIAA Journal, 2012, 50(50):1453-1461. doi: 10.2514/13050926
    [43] Merienne M C, Le Sant Y, Ancelle J, et al. Unsteady pressure measurement instrumentation using anodized-aluminum PSP applied in a transonic wind tunnel[J]. Meas Sci Technol, 2004, 15(15):2349-2360. http://adsabs.harvard.edu/abs/2004MeScT..15.2349M
    [44] McGraw C M, Shroff H, Khalil G, et al. The phosphorescence microphone:a device for testing oxygen sensors and films[J]. Rev Sci Instrum, 2003, 74(12):5260-5266. doi: 10.1063/1.1626009
    [45] Virgin C A, Carroll B F, Cattafesta L N, et al. Pressure sensitive paint for acoustic pressure fluctuations[C]. Proc 2005 ASME Int Mech Eng Congr Expo, New York, 2005.
    [46] Peng D, Jensen C D, Juliano T J, et al. Temperature-compensated fast pressure sensitive paint[J]. AIAA Journal, 2013, 51(10):2420-2431. doi: 10.2514/1.J052318
    [47] Klein C, Sachs W E, Henne U, et al. Determination of transfer function of pressure-sensitive paint[R]. AIAA-2010-0309, 2010. doi: 10.2514/6.2010-309
    [48] Klein C, Sachs W E, Henne U. et al. Application of pressure-sensitive paint for determination of dynamic surface pressures on a 30 Hz oscillating 2D profile in transonic flow[M]. New York:Springer, 2010.
    [49] Gregory J W, Sakaue H, Sullivan J P. Fluidic oscillator as a dynamic calibration tool[R]. AIAA-2002-2701, 2002. doi: 10.2514/6.2002-2701
    [50] Sakamura Y, Suzuki T, Matsumoto M. Optical measurements of high-frequency pressure fluctuations using a pressure-sensitive paint and Cassegrain optics[J]. Meas Sci Technol, 2002, 13(10):1591-1598. doi: 10.1088/0957-0233/13/10/312
    [51] Jordan J D, Watkins A N, Weaver W L, et al. Sol-gel-based pressure-sensitive paint development[R]. AIAA-99-0566, 1999. doi: 10.2514/6.1999-566
    [52] Nakakita K. Scanning unsteady PSP technique for high-frequency and small-pressure fluctuation in low-speed[R]. AIAA-2010-4920, 2010.
    [53] Nakakita K. Unsteady pressure measurement on NACA0012 model using global low-speed unsteady PSP technique[R]. AIAA-2011-3901, 2011. doi: 10.2514/6.2011-3901
    [54] Yorita D, Nagai H, Asai K, et al. Unsteady PSP technique for measuring naturally-disturbed periodic phenomena[R]. AIAA-2010-0307, 2010. doi: 10.2514/6.2010-307
    [55] Asai K, Yorita D. Unsteady PSP measurement in low-speed flow: overview of recent advancement at Tohoku University[R]. AIAA-2011-0847, 2011.
    [56] Disotell K J, Gregory J W. Unsteady surface signature of a pulsed vortex generator jet[J]. Vis Journal, 2011, 14(2):121-127. doi: 10.1007/s12650-011-0080-3
    [57] Fang S, Disotell K J, Long S R, et al. Application of fast responding pressure-sensitive paint to a hemispherical dome in unsteady transonic flow[J]. Exp Fluids, 2011, 50(6):1495-1505. doi: 10.1007/s00348-010-1010-1
    [58] Pastuhoff M, Tillmark N, Alfredsson P H. Wall pressure measurements in a Y-junction at pulsating flow using polymer/ceramic pressure sensitive paint[C]. Proc 10th Int Symp Exp Comput Aerothermodyn Internal Flows, Brussels, 2011.
    [59] Singh M, Naughton J W, Yamashita T, et al. Surface pressure and flow field behind an oscillating fence submerged in turbulent boundary layer[J]. Exp Fluids, 2011, 50(3):701-714. doi: 10.1007/s00348-010-0977-y
    [60] Kameda M, Seki H, Makoshi T, et al. Unsteady measurement of a transonic delta wing flow by a novel PSP[R]. AIAA-2008-6418, 2008. doi: 10.2514/6.2008-6418
    [61] Nakakita K, Osawa J, Hori N, et al. Unsteady pressure-sensitive paint measurement for oscillating shock wave in supersonic nozzle[R]. AIAA-2008-6580, 2008.
    [62] Nakakita K, Arizono H. Visualization of unsteady pressure behavior of transonic flutter using pressure-sensitive paint measurement[R]. AIAA-2009-3847, 2009.
    [63] Nakakita K, Takama Y, Imagawa K, et al. Unsteady PSP measurement of transonic unsteady flow field around a rocket fairing model[R]. AIAA-2012-2758, 2012. http://www.researchgate.net/publication/268563427_Unsteady_PSP_Measurement_of_Transonic_Unsteady_Flow_Field_around_a_Rocket_Fairing_Model
    [64] Crafton J, Forlines A, Palluconi S, et al. Investigation of transverse jet injections in a supersonic crossflow using fast responding pressure-sensitive paint[R]. AIAA-2011-3522, 2011.
    [65] Bitter M, Hara T, Hain R, et al. Characterization of pressure dynamics in an axisymmetric separating/reattaching flow using fast-responding pressure-sensitive paint[J]. Exp Fluids, 2012, 53(6):1737-1749. doi: 10.1007/s00348-012-1380-7
    [66] Hayashi T, Ishikawa H, Sakaue H. Development of polymer-ceramic pressure-sensitive paint and its application to supersonic flow field[C]. 28th Int Symp ShockWaves, Berlin: Springer, 2012.
    [67] Flaherty W, Reedy T M, Elliott G S, et al. Investigation of cavity flow using fast-response pressure sensitive paint[R]. AIAA-2013-0678, 2013. doi: 10.2514/1.J052864
    [68] Merienne M C, Le Sant Y, Lebrun F, et al. Transonic buffeting investigation using unsteady pressure-sensitive-paint in a large wind tunnel[R]. AIAA-2013-1136, 2013.
    [69] Hird K, Juliano T J, Gregory J W, et al. Study of unsteady surface pressure on a turret via pressure-sensitive paint[C]. AIAA Fluid Dyn Conf, San Diego, CA, 2013. doi: 10.2514/6.2013-3135
    [70] Nakakita K. Unsteady pressure distribution measurement around 2D-cylinders using pressure-sensitive paint[R]. AIAA-2007-3819, 2007. http://www.researchgate.net/publication/268561760_Unsteady_Pressure_Distribution_Measurement_around_2D-Cylinders_Using_Pressure-Sensitive_Paint
    [71] Sakaue H, Miyamoto K, Miyazaki T. A motion-capturing pressure-sensitive paint method[J]. Appl Phys, 2013, 113(8):084901. doi: 10.1063/1.4792761
    [72] Stich M I J, Fischer L H, Wolfbeis O S. Multiple fluorescent chemical sensing and imaging[J]. Chem Soc Rev, 2010, 39(8):3102-3114. doi: 10.1039/b909635n
    [73] Gregory J W, Kumar P, Peng D, et al. Integrated optical measurement techniques for investigations of fluid-structure interactions[R]. AIAA-2009-4044, 2009. doi: 10.2514/6.2009-4044
    [74] Juliano T J, Kumar P, Peng D, et al. Single-shot, lifetime-based pressure sensitive paint for rotating blades[J]. Meas Sci Technol, 2011, 22(8):085403. doi: 10.1088/0957-0233/22/8/085403
    [75] Disotell K J, Juliano T J, Peng D, et al. Unsteady pressure-sensitive paint measurements on an articulated model helicopter in forward flight[R]. AIAA-2012-2757, 2012.
    [76] Disotell K J, Juliano T J, Peng D, et al. Single-shot temperature-and pressure-sensitive paint measurements on an unsteady helicopter blade[J]. Exp Fluids, 2014, 55(2):1671. doi: 10.1007/s00348-014-1671-2
    [77] Fang S, Long S R, Disotell K J, et al. Comparison of unsteady pressure-sensitive paint measurement techniques[J]. AIAA Journal, 2012, 50(1):109-122. doi: 10.2514/1.J051167
    [78] Watkins A N, Leighty B D, Lipford W E, et al. Deployment of a pressure sensitive paint system for measuring global surface pressures on rotorcraft blades in simulated forward flight[R]. AIAA-2012-2756, 2012.
    [79] Wong O D, Watkins A N, Goodman K Z, et al. Blade tip pressure measurements using pressure sensitive paint[C]. Proc 68th Am Helicopter Soc Annu Forum Technol Disp, Alexandria, 2012.
    [80] Gregory J W, Juliano T J, Disotell K J, et al. Deconvolution-based algorithms for deblurring PSP images of rotating surfaces[R]. AIAA-2013-0484, 2013. http://www.researchgate.net/publication/289183356_Deconvolution-based_algorithms_for_deblurring_PSP_images_of_rotating_surfaces?ev=auth_pub
    [81] Goss L, Jones G, Crafton J, et al. Temperature compensation for temporal (lifetime) pressure sensitive paint measurements[R]. AIAA-2005-1027, 2005.
    [82] Kimura F, Rodriguez M, McCann J, et al. Development and characterization of fast responding pressure sensitive microspheres[J]. Rev Sci Instrum, 2008, 79(7):074102. doi: 10.1063/1.2952502
    [83] Sullivan J P. Temperature and pressure sensitive paint[C]. Lecture Series 2000-2001, Advanced Measurement Techniques, The von Karman Institute for Fluid Mechanics, Belgium, 2001.
    [84] Tomac M N, Gregory J W. Jet interactions in a feedback-free fluidic oscillator at low flow rate[C]. AIAA Fluid Dyn Conf, San Diego, CA, 2013. http://www.researchgate.net/publication/269049643_Jet_Interactions_in_a_Feedback-Free_Fluidic_Oscillator_at_Low_Flow_Rate
    [85] Crafton J, Forlines A, Palluconi S, et al. Investigation of transverse jet injections in a supersonic crossflow using fast responding pressure-sensitive paint[J]. Exp Fluids, 2015, 56(2):27. doi: 10.1007/s00348-014-1877-3
    [86] Xingju X, Minglei Y, Jingbo Y, et al. Fast Response PSP Measurement In a Hypersonic Wind Tunnel[R]. AIAA-2014-2943, 2014. http://www.researchgate.net/publication/281700229_Fast_response_PSP_measurement_in_a_hypersonic_wind_tunnel
    [87] Burns S, Sullivan J P. The use of pressure sensitive paints on rotating machinery[C]. Proc 16th Int Cong Instrumentation in Aerospace Simulation Facilities (ICIASF), 1995. http://www.researchgate.net/publication/3655474_The_use_of_pressure_sensitive_paints_on_rotating_machinery
    [88] Mosharov V E, Radchenko V N, Fonov S D. Luminescent pressure sensors in aerodynamic experiments[R]. TsAGI 8805, 1997.
    [89] Hubner J P, Abbitt J D, Carroll B F. Pressure measurements on rotating machinery using lifetime imaging of pressure sensitive paint[R]. AIAA-96-2934, 1996. http://www.researchgate.net/publication/268457406_Pressure_measurements_on_rotating_machinery_using_lifetime_imaging_of_pressure_sensitive_paint
    [90] Disotell K J, Peng D, Juliano T J, et al. Single-shot temperature-and pressure-sensitive paint measurements on an unsteady helicopter blade[J]. Exp Fluids, 2014, 55(2):1671. doi: 10.1007/s00348-014-1671-2
    [91] Peng D, Lingrui J, Yuelong Y, et al. Single-shot lifetime-based PSP and TSP measurements on turbocharger compressor blades[J]. Exp Fluids, 2017, 58(9):127. doi: 10.1007/s00348-017-2416-9
    [92] Ishii M, Yamada M, Miyazaki T, et al. Pressure/temperature measurement of a free-flight object by PSP/TSP[R]. AIAA-2014-2542, 2014. doi: 10.2514/6.2014-2542
    [93] Peng D, Wang S F, Liu Y Z. Fast PSP measurements of wall-pressure fluctuation in low-speed flows:improvements using proper orthogonal decomposition[J]. Exp Fluids, 2016, 57(4):45. doi: 10.1007/s00348-016-2130-z
    [94] Nakakita K, Yamazaki T, Asai K, et al. Pressure sensitive paint measurement in a hypersonic shock tunnel[R]. AIAA-2000-2523, 2000. doi: 10.2514/6.2000-2523
    [95] Gardner A D, Klein C, Sachs W E, et al. Investigation of three-dimensional dynamic stall on an airfoil using fast-response pressure-sensitive paint[J]. Exp Fluids, 2014, 55(9):1807. doi: 10.1007/s00348-014-1807-4
    [96] Neal Watkins A, Bradley D Leighty, William E Lipford, et al. Applying pressure sensitive paint technology to rotor blades[R]. NASA/TM-2014-218259, 2014. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140006409.pdf
    [97] Jingbo Y, Zhan H, Yipeng R, et al. Investigation of unsteady pressure measurement and visualization using fast response PSP[C]. The 14th Asian Symposium on Visualization, Beijing, 2017.
  • 加载中
图(24) / 表(1)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  188
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-22
  • 修回日期:  2018-04-23
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日