留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乙烯高速射流点火过程试验研究

刘冰 何国强 秦飞

刘冰, 何国强, 秦飞. 乙烯高速射流点火过程试验研究[J]. 实验流体力学, 2018, 32(2): 24-27. doi: 10.11729/syltlx20180003
引用本文: 刘冰, 何国强, 秦飞. 乙烯高速射流点火过程试验研究[J]. 实验流体力学, 2018, 32(2): 24-27. doi: 10.11729/syltlx20180003
Liu Bing, He Guoqiang, Qin Fei. Experimental study on ignition process for ethylene high speed jet[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 24-27. doi: 10.11729/syltlx20180003
Citation: Liu Bing, He Guoqiang, Qin Fei. Experimental study on ignition process for ethylene high speed jet[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 24-27. doi: 10.11729/syltlx20180003

乙烯高速射流点火过程试验研究

doi: 10.11729/syltlx20180003
基金项目: 

国家自然科学基金 91541110

详细信息
    作者简介:

    刘冰(1991-), 男, 陕西合阳人, 博士研究生。研究方向:超声速燃烧试验与数值模拟。通信地址:陕西省西安市友谊西路127号西北工业大学(710072)。E-mail:always2n@mail.nwpu.edu.cn

    通讯作者:

    秦飞, E-mail:qinfei@nwpu.edu.cn

  • 中图分类号: V231.3

Experimental study on ignition process for ethylene high speed jet

  • 摘要: 为了研究超燃冲压发动机燃烧室流动状态下的富燃燃气点火过程,设计建立了一套用于研究高速乙烯射流在富燃燃气中点火过程的高温同轴射流试验装置。试验研究了伴流当量比1.4和1.6,乙烯射流喷注压力2×105Pa和3×105Pa参数下的点火过程,试验过程中乙烯射流均能实现稳定燃烧。结合高速摄像机和后处理分析点火过程发现:(1)乙烯高速射流在富燃燃气中的点火过程主要分为4个阶段:(a)主流和伴流掺混;(b)主流和空气发生剧烈化学反应;(c)火焰在下游发生局部熄火;(d)火焰达到稳定状态。(2)伴流当量比1.4比伴流当量比1.6更有利于高速流动下的点火。(3)乙烯射流速度的增大会导致不充分燃烧,火焰亮度变弱。
  • 图  1  试验装置示意图

    Figure  1.  Schematic diagram of the experimental setup

    图  2  工况1和2的点火过程

    Figure  2.  Chemiluminescence images of ignition process for case 1 and case 2

    图  3  点火过程中工况1和2总亮度值随时间的变化

    Figure  3.  Integrated chemiluminescence in observation area of case 1 and case 2

    图  4  工况1和3的点火过程

    Figure  4.  Chemiluminescence images of ignition process for case 1 and case 3

    图  5  点火过程中工况1和3总亮度值随时间的变化

    Figure  5.  Integrated chemiluminescence in observation area of case 1 and case 3

    表  1  试验工况

    Table  1.   Experimental conditions

    Case Coflow
    Main
    jet
    p/105Pa
    Max
    main jet
    v/(m·s-1)
    Max
    Mach
    number
    Coflow
    u
    /(m·s-1)
    1 1.4 2 345 1.1 1.5
    2 1.6 2 345 1.1 1.5
    3 1.4 3 439 1.4 1.5
    下载: 导出CSV

    表  2  伴流的温度和组分质量分数

    Table  2.   Temperature and species mass fraction of coflow

    Coflow
    Temperature
    T/K
    H2
    /%
    CO
    /%
    CO2
    /%
    H2O
    /%
    1.4 2254 0.3 10.8 10.3 8.5
    1.6 2132 0.5 14.7 7.7 7.9
    下载: 导出CSV
  • [1] 张弯洲, 乐嘉陵, 杨顺华, 等. Ma4下超燃发动机乙烯点火及火焰传播过程试验研究[J].实验流体力学, 2016, 30(3):40-46. http://www.syltlx.com/CN/abstract/abstract10932.shtml

    Zhang W Z, Le J L, Yang S H, et al. Experimental research on ethylene ignition and flame propagation processes for scramjet at Ma4[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3):40-46. http://www.syltlx.com/CN/abstract/abstract10932.shtml
    [2] Kumaran K, Behera P R, Babu V. Numerical investigation of the supersonic combustion of kerosene in a strutbased combustor[J]. Journal of Propulsion and Power, 2010, 26(5):1084-1091. doi: 10.2514/1.46965
    [3] Kumaran K, Babu V. Mixing and combustion characteristics of kerosene in a model supersonic combustor[J]. Journal of Propulsion and Power, 2009, 25(3):583-592. doi: 10.2514/1.40140
    [4] Manna P, Behera R, Chakraborty D. Liquid-fueled strut-based scramjet combustor design:a computational fluid dynamics approach[J]. Journal of Propulsion and Power, 1971, 24(2):274-281. http://www.ijsrd.com/Article.php?manuscript=IJSRDV2I9028
    [5] Oldenhof E, Tummers M J, Veen E H V, et al. Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames[J]. Combustion & Flame, 2010, 157(6):1167-1178. https://www.sciencedirect.com/science/article/pii/S0010218010000131
    [6] Oldenhof E, Tummers M J, Veen E H V, et al. Role of entrainment in the stabilisation of jet-in-hot-coflow flames[J]. Combustion & Flame, 2011, 158(8):1553-1563. https://www.sciencedirect.com/science/article/pii/S001021801000372X
    [7] Oldenhof E, Tummers M J, Veen E H V, et al. Transient response of the Delft jet-in-hot coflow flames[J]. Combustion & Flame, 2012, 159(2):697-706. https://www.sciencedirect.com/science/article/pii/S0010218011002343
    [8] Oldenhof E, Tummers M J, Veen E H V, et al. Conditional flow field statistics of jet-in-hot-coflow flames[J]. Combustion & Flame, 2013, 160(8):1428-1440. https://www.sciencedirect.com/science/article/pii/S0010218013000916
    [9] Gordon R L, Masri A R. Mastorakos E. Simultaneous Rayleigh temperature, OH-and CH2O-LIF imaging of methane jets in a vitiated coflow[J]. Combustion and Flame, 2008, 155(1-2):181-195. doi: 10.1016/j.combustflame.2008.07.001
    [10] Masri A R. Heat release rate as represented by×and its role in autoignition[J]. Combustion Theory & Modelling, 2009, 13(4):645-670. http://adsabs.harvard.edu/abs/2009CTM....13..645G
    [11] 沈雪豹, 叶桃红, 严野, 等.湍流射流火焰抬举高度的实验研究[J].工业加热, 2014, 43(6):6-10. http://www.cnki.com.cn/Article/CJFDTotal-GYJR201406004.htm

    Shen X B, Ye T H, Yan Y, et al. Studying of lifted height of jet flame in turbulent combustion by experiment[J]. Industrial Heating, 2014, 43(6):6-10. http://www.cnki.com.cn/Article/CJFDTotal-GYJR201406004.htm
    [12] 闫小龙, 林其钊, 严野, 等.可控有损热伴流燃烧器的性能研究[J].工业加热, 2013, 42(5):4-6. http://www.cqvip.com/QK/93207A/201305/47787250.html

    Yan X L, Lin Q Z, Yan Y, et al. Design and resrarch on charcteristiics of controllable of a vitiated coflow combustor[J]. Industrial Heating, 2013, 42(5):4-6. http://www.cqvip.com/QK/93207A/201305/47787250.html
    [13] Cheng T S, Wehrmeyer J A, Pitz R W, et al. Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame[J]. Combustion & Flame, 1994, 99(1):157-173.
    [14] Weisgerber H, Martinuzzi R, Brummund U, et al. PIV measurements in a Mach 2 hydrogen-air supersonic combustion[C]. AIAA/Nal-Nasda-Isas International Space Planes and Hypersonic Systems and Technologies Conference, 2013.
    [15] 张弯洲, 乐嘉陵, 杨顺华, 等.马赫数4下氢气自燃辅助乙烯点火实验研究[J].推进技术, 2013, 34(12):1628-1635. http://www.cnki.com.cn/Article/CJFDTotal-DJZD201505027.htm

    Zhang W Z, Le J L, Yang S H, et al. Experimental research on eth-ylene ignition with hydrogen self-ignition assistant at Mach 4[J]. Journal of Propulsion Technology, 2013, 34(12):1268-1635. http://www.cnki.com.cn/Article/CJFDTotal-DJZD201505027.htm
    [16] Ombrello T M, Carter C D, Tam C J, et al. Cavity ignition in supersonic flow by spark discharge and pulse detonation[J]. Proceedings of the Combustion Institute, 2015, 35(2):2101-2108. doi: 10.1016/j.proci.2014.07.068
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  84
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-03
  • 修回日期:  2018-03-08
  • 刊出日期:  2018-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日