留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贫燃熄火实验预测方法综述

黄建青 李磊 蔡伟伟

黄建青, 李磊, 蔡伟伟. 贫燃熄火实验预测方法综述[J]. 实验流体力学, 2018, 32(2): 1-9. doi: 10.11729/syltlx20170165
引用本文: 黄建青, 李磊, 蔡伟伟. 贫燃熄火实验预测方法综述[J]. 实验流体力学, 2018, 32(2): 1-9. doi: 10.11729/syltlx20170165
Huang Jianqing, Li Lei, Cai Weiwei. Experimental prediction of lean blowout: a review[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 1-9. doi: 10.11729/syltlx20170165
Citation: Huang Jianqing, Li Lei, Cai Weiwei. Experimental prediction of lean blowout: a review[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 1-9. doi: 10.11729/syltlx20170165

贫燃熄火实验预测方法综述

doi: 10.11729/syltlx20170165
基金项目: 

国家自然科学基金 51706141

详细信息
    作者简介:

    黄建青(1995-), 男, 福建龙岩人, 博士研究生。研究方向:燃烧诊断。通信地址:上海市闵行区东川路800号, 上海交通大学闵行校区B1702094邮箱(200240)。E-mail:huang-j-q@sjtu.edu.cn

    通讯作者:

    蔡伟伟, E-mail:cweiwei@sjtu.edu.cn

  • 中图分类号: TK31

Experimental prediction of lean blowout: a review

  • 摘要: 贫燃熄火(Lean Blowout,LBO)属于一类特殊的不稳定燃烧现象,往往导致严重后果。因此,及时准确地预测出贫燃熄火现象是实现燃烧稳定性控制的一个重要前提。本文综述了2000年以来,基于化学发光信号、可见光谱颜色信号、温度信号、声压信号和离子电信号预测LBO的原理,以及其采集方式和各自特点。接着介绍了将这些信号进行分析处理得到控制参数的5类方法,分别为统计法、阈值-事件法、频谱法、符号法和非线性动力学法,将这些方法进行综合比较,评价了其预测效果。最后从实际应用的角度出发,对贫燃熄火检测技术的未来发展提出展望。
  • 图  1  基于TDL传感器测温的LBO实时监测控制实验原理图[8]

    Figure  1.  Schematic diagram of the real-time TDL temperature sensor and the swirl-stabilized combustor[8]

    图  2  离子电流测量原理[22]

    Figure  2.  Schematic diagram of the measurement principle[22]

    图  3  离子电流传感器[22]

    Figure  3.  Ion current sensor[22]

    图  4  不同工况下NRMS随当量比的变化趋势[27]

    Figure  4.  Different working conditions of NRMS[27]

    图  5  不同工况下Θ随当量比的变化趋势[27]

    Figure  5.  Normalized cumulative duration of LBO precursor events under different working conditions[27]

    图  6  双阈值判定事件原理图[5]

    Figure  6.  An example precursor event in optical signal along with the thresholds used for its detection[5]

    图  7  TDL传感器测温的0~50Hz能量分数变化曲线[11]

    Figure  7.  Fraction of FFT power in 0~50Hz of TDL sensor output signal as a function of equivalence ratio[11]

    图  8  符号时序分析原理[28]

    Figure  8.  Concept of symbolic time series analysis[28]

    图  9  非线性时序分析原理[29]

    Figure  9.  Nonlinear time series analysis[29]

    表  1  信号类型汇总

    Table  1.   Summary of signal types for LBO prediction

    信号类型
    Signal type
    采集设备
    Instrumentation
    采样频率
    Sampling frequency
    参考文献 & 年份
    References & year
    信号采集特点
    Characteristics
    Chemiluminescence
    (OH*/CH*)
    Photodiode
    PMT
    1~5 kHz [3, 6, 24-28]
    2002-2016
    (a) Area measurement; (b) Easily affected by interference from other species; (c) Require optical windows
    Acoustic pressure
    (p)
    Microphone 2kHz [14, 15, 17, 18, 29]
    2003-2015
    (a) Global measurement; (b) Easily affected by interference from background noise; (c) Easy to operate
    Temperature(T) TDL 2kHz [8, 9, 11, 30]
    2006-2009
    (a) Local measurement; (b) Insensitive to background acoustic noise and flame emissions; (c) Complex and not easy to operate
    Color
    (C)
    DSLR camera Maximum framing rate [12, 13]
    2008-2013
    (a) Global measurement; (b) Inexpensive and easy to operate; (c) consistent for sensing the incipient LBO over awide range of air/fuel unmixedness
    Ion
    (I)
    Ion current sensor 4~10kHz [20-23, 31]
    2004-2017
    (a) Local and intrusion measurement; (b) Easy to install; (c) Sensitive to the change of flame
    下载: 导出CSV

    表  2  信号处理方法汇总

    Table  2.   Summary of signal processing methods for LBO prediction

    信号处理方法 信号来源 控制参数 计算效率 稳定性 灵敏性 参考文献 & 年份
    Statistic OH*/CH*,
    p,
    C,
    I
    RMSΘγ
    σ2μ;Peak;
    High Low Low [6, 13, 27, 32, 41]
    2002-2016
    Threshold-event OH*/CH*,
    p,
    I
    SI Medium High High [5, 15, 25, 26, 42]
    2002-2013
    Symbol OH*/CH*,
    p,
    M High High Medium [28, 36, 37]
    2006-2015
    Spectrum OH*/CH*,
    p,
    T,
    I
    EF; SIR Medium Medium Low [7, 9, 11, 15, 18, 20, 31]
    2002-2017
    Nonlinear dynamics p Etrans; hp Low High Medium [29, 38, 39]
    2011-2014
    下载: 导出CSV
  • [1] Chao Y C, Chang Y L, Wu C Y, et al. An experimental investigation of the blowout process of a jet flame[J]. Proceedings of the Combustion Institute, 2000, 28(1):335-342. doi: 10.1016/S0082-0784(00)80228-3
    [2] Hedman P O, Fletcher T H, Graham S G, et al. Observations of flame behavior in a laboratory-scale pre-mixed natural gas/air gas turbine combustor from PLIF measurements of OH[J]. American Society of Mechanical Engineers, 2002, (2):301-311. https://www.researchgate.net/profile/Thomas_Fletcher4/publication/267403664_Observations_of_Flame_Behavior_in_a_Laboratory-Scale_Pre-Mixed_Natural_GasAir_Gas_Turbine_Combustor_From_PLIF_Measurements_of_OH/links/548f48480cf2d1800d8624aa.pdf
    [3] Muruganandam T M, Seitzman J M. Characterization of extinction events near blowout in swirl dump combustors[R]. AIAA-2005-4331, 2015.
    [4] Docquier N, Candel S. Combustion control and sensors:a review[J]. Progress in Energy & Combustion Science, 2002, 28(2):107-150. https://www.sciencedirect.com/science/article/pii/S0360128501000090
    [5] Bompelly R K. Lean blowout and its robust sensing in swirl combustors[D]. Georgia Institute of Technology, 2013.
    [6] Thiruchengode M. Sensing and dynamics of lean blowout in a swirl dump combustor[J]. Dissertation Abstracts International, 2006, 67(3):1544. https://smartech.gatech.edu/handle/1853/10538?show=full
    [7] Muruganandam T, et al. Optical and acoustic sensing of lean blowout precursors[C]. AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006.
    [8] Hanson R K, Jeffries J B, Zhou X, et al. Smart sensors for advanced combustion systems[R]. GCEP Technical Report, 2006.
    [9] Li H, Zhou X, Jeffries J B, et al. Active control of lean blowout in a swirl-stabilized combustor using a tunable diode laser[J]. Proceedings of the Combustion Institute, 2007, 31(2):3215-3223. doi: 10.1016/j.proci.2006.07.006
    [10] Zhou X, Jeffries J B, Hanson R K. Development of a fast temperature sensor for combustion gases using a single tunable diode laser[J]. Applied Physics B, 2005, 81(5):711-722. doi: 10.1007/s00340-005-1934-y
    [11] Li H, Zhou X, Jeffries J B, et al. Sensing and control of combustion instabilities in swirl stabilized combustors using diode-Laser absorption[J]. AIAA Journal, 2007, 45(2):390-398. doi: 10.2514/1.24774
    [12] Huang H W, Zhang Y. Flame colour characterization in the vi-sible and infrared spectrum using a digital camera and image processing[J]. Measurement Science & Technology, 2008, 19(19):085406. http://cat.inist.fr/?aModele=afficheN&cpsidt=20575331
    [13] Chaudhari R, Sahu R, Ghosh S, et al. Flame color as a lean blowout predictor[J]. International Journal of Spray & Combustion Dynamics, 2013, 5(1):49-66. https://www.researchgate.net/profile/Suvojit_Ghosh/publication/279229337_Flame_Color_as_a_Lean_Blowout_Predictor/links/55d5dd7608ae9d65948984f5/Flame-Color-as-a-Lean-Blowout-Predictor.pdf
    [14] Cohen J M, Wake B E, Choi D. Investigation of instabilities in a lean, premixed step combustor[J]. Journal of Propulsion & Power, 2003, 19(1):81-88. https://www.researchgate.net/publication/245435357_Investigation_of_Instabilities_in_a_Lean_Premixed_Step_Combustor
    [15] Nair S, Lieuwen T. Acoustic detection of blowout in premixed flames[J]. Journal of Propulsion & Power, 2012, 21(1):32-39. https://www.researchgate.net/profile/Tim_Lieuwen/publication/228615582_Acoustic_Detection_of_Blowout_in_Premixed_Flames/links/5404737f0cf2c48563b09363.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [16] Prakash S, Nair S, Muruganandam T M, et al. Acoustic based rapid blowout mitigation in a swirl stabilized combustor[C]. ASME Turbo Expo 2005: Power for Land, Sea and Air, 2005.
    [17] Nair S, Lieuwen T. Acoustic detection of imminent blowout in pilot and swirl stabilized combustors[C]//Proceedings of ASME/IGTI Turbo Expo Atlanta, Georgia, 2003.
    [18] Thiruchengode M M, Nair S, Lieuwen T, et al. Real-time control of the lean blow out limit in premixed combustors[C]//Proceedings of the Third Joint Meeting of the US, 2003.
    [19] Fialkov A B. Investigations on ions in flames[J]. Progress in Energy & Combustion Science, 1997, 23(5-6):399-528. https://www.sciencedirect.com/science/article/pii/S0360128597000166
    [20] Thornton J D, Straub D L, Chorpening B T, et al. A combustion control and diagnostics sensor for gas turbines[C]. ASME Turbo 2004: Power for Land, Sea and Air, 2004.
    [21] Chorpening B T, Straub D L, Huckaby E D, et al. Detection of lean blowout and combustion dynamics using flame ionization[C]. ASME Turbo Expo 2005: Power for Land, Sea and Air, 2005.
    [22] Li F, Xu L, Du M, et al. Ion current sensing-based lean blowout detection for a pulse combustor[J]. Combustion & Flame, 2017, 176:263-271. https://www.sciencedirect.com/science/article/pii/S0010218016303248
    [23] Straub D L, Chorpening B T, Huckaby E D, et al. Time-varying flame ionization sensing applied to natural gas and propane blends in a pressurized lean premixed (LPM) combustor[C]. American Society of Mechanical Engineers, 2008.
    [24] Thiruchengode M, Nair S, Neumeier Y, et al. An active control system for LBO margin reduction in turbine engines[J]. British Phycological Journal, 2003, 27(2):107-118. http://www.academia.edu/6064326/An_Active_Control_System_for_LBO_Margin_Reduction_in_Turbine_Engines
    [25] Nair S, Muruganandam T M, Olsen R, et al. Lean blowout detection in a single nozzle swirl cup combustor[R]. AIAA-2004-138, 2004.
    [26] Bompelly R, Lieuwen T, Seitzman J. Lean blowout and its sensing in the presence of combustion dynamics in a premixed swirl combustor[C]. AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2013.
    [27] Yi T, Gutmark E J. Real-time prediction of incipient lean blowout in gas turbine combustors[J]. AIAA Journal, 2015, 45(7):1734-1739. https://www.researchgate.net/profile/Tongxun_Yi/publication/245426311_Real-Time_Prediction_of_Incipient_Lean_Blowout_in_Gas_Turbine_Combustors/links/0a85e53317e08d3034000000.pdf
    [28] Mukhopadhyay A, Chaudhari R R, Paul T, et al. Lean blow-out prediction in gas turbine combustors using symbolic time series analysis[J]. Journal of Propulsion & Power, 2013, 29(4):950-960. doi: 10.2514/1.B34711?journalCode=jpp
    [29] Shinoda Y, Kobayashi M, Gotoda H, et al. Detection of lean blowout in a premixed gas-turbine model combustor based on nonlinear dynamics[J]. Advanced Computational Methods & Experiments in Heat Transfer XⅡ, 2012, 75(6):323-331. doi: 10.2514/1.B34711?journalCode=jpp
    [30] Rieker G B, Jeffries J B, Hanson R K, et al. Diode laser-based detection of combustor instabilities with application to a scramjet engine[J]. Proceedings of the Combustion Institute, 2009, 32(1):831-838. doi: 10.1016/j.proci.2008.06.114
    [31] Nair S, Rajaram R, Meyers A J, et al. Acoustic and ion sensing of lean blowout in an aircraft combustor simulator[R]. AIAA-2005-932, 2005.
    [32] Taware A, Shah M, Wu P, et al. Acoustics based prognostics for DLE combustor lean blowout detection[C]. ASME Turbo Expo 2006: Power for Land, Sea and Air, 2006.
    [33] Muruganandam T M, Seitzman J M. Optical sensing of lean blowout precursors in a premixed swirl stabilized dump combustor[C]. ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference, 2003.
    [34] Muruganandam T M, Nair S, Scarborough D, et al. Active control of lean blowout for turbine engine combustors[J]. Journal of Propulsion & Power, 2005, 21(5):807-814. http://cat.inist.fr/?aModele=afficheN&cpsidt=17113913
    [35] Giorgi M G D, Sciolti A, Campilongo S, et al. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner[J]. Data in Brief, 2015, 6(C):189. https://www.sciencedirect.com/science/article/pii/S2352340915003467
    [36] Datta S, Mukhopadhyay A, Sanyal D. Use of temporal irreversibility of symbolic time series for early detection of extinction in thermal pulse combustors[C]. ASME 2006 International Mechanical Engineering Congress and Exposition, 2006.
    [37] Sarkar S, Ray A, Mukhopadhyay A, et al. Dynamic data-driven prediction of lean blowout in a swirl-stabilized combustor[J]. International Journal of Spray & Combustion Dynamics, 2015, 7(3):209-242. doi: 10.1260/1756-8277.7.3.209
    [38] Gotoda H, Nikimoto H, Miyano T, et al. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor[J]. Chaos, 2011, 21(1):013124. doi: 10.1063/1.3563577
    [39] Gotoda H, Shinoda Y, Kobayashi M, et al. Detection and control of combustion instability based on the concept of dynamical system theory[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2014, 89(2):672-699. http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleid=2539420
    [40] Domen S, Gotoda H, Kuriyama T, et al. Detection and prevention of blowout in a lean premixed gas-turbine model combustor using the concept of dynamical system theory[J]. Proceedings of the Combustion Institute, 2015, 35(3):3245-3253. doi: 10.1016/j.proci.2014.07.014
    [41] Giorgi M G D, Sciolti A, Campilongo S, et al. Image processing for the characterization of flame stability in a non-premixed liquid fuel burner near lean blowout[J]. Aerospace Science & Technology, 2016, 49:41-51. https://www.sciencedirect.com/science/article/pii/S1270963815003740
    [42] Bompelly R K, Seitzman J M. Robust lean blowout sensing for turbine engine combustors[C]. ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, 2011.
    [43] Ballester J, Hernández R, Sanz A, et al. Chemiluminescence monitoring in premixed flames of natural gas and its blends with hydrogen[J]. Proceedings of the Combustion Institute, 2009, 32(2):2983-2991. doi: 10.1016/j.proci.2008.07.029
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  144
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-27
  • 修回日期:  2018-03-12
  • 刊出日期:  2018-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日