留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速流动PIV示踪粒子跟随响应特性实验研究

王彦植 陈方 刘洪 沙莎 逯雪铃 张庆兵 岳连捷

王彦植, 陈方, 刘洪, 等. 高速流动PIV示踪粒子跟随响应特性实验研究[J]. 实验流体力学, 2018, 32(3): 94-99. doi: 10.11729/syltlx20170160
引用本文: 王彦植, 陈方, 刘洪, 等. 高速流动PIV示踪粒子跟随响应特性实验研究[J]. 实验流体力学, 2018, 32(3): 94-99. doi: 10.11729/syltlx20170160
Wang Yanzhi, Chen Fang, Liu Hong, et al. Experimental investigation on response characteristics of PIV tracer particles in high speed flow[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 94-99. doi: 10.11729/syltlx20170160
Citation: Wang Yanzhi, Chen Fang, Liu Hong, et al. Experimental investigation on response characteristics of PIV tracer particles in high speed flow[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 94-99. doi: 10.11729/syltlx20170160

高速流动PIV示踪粒子跟随响应特性实验研究

doi: 10.11729/syltlx20170160
详细信息
    作者简介:

    王彦植(1992-), 男, 黑龙江齐齐哈尔人, 硕士。研究方向:超声速空气动力学实验以及湍流燃烧测试。通信地址:上海市东川路800号航空航天学院(200240)。E-mail:wangyanzhi16@sjtu.edu.cn

    通讯作者:

    陈方, E-mail:fangchen@sjtu.edu.cn

  • 中图分类号: V411.7

Experimental investigation on response characteristics of PIV tracer particles in high speed flow

  • 摘要: 示踪粒子的跟随响应能力是影响高速流动PIV测量精度的重要因素。针对法向马赫数大于1.4的高速流动所提出粒子松弛特性分析模型,结合理论分析与数值模拟方法,发展了高速流动下的示踪粒子布撒技术,提高了PIV技术定量化测量能力。基于上海交通大学多马赫数风洞,以不同粒径的氧化钛颗粒作为示踪粒子,利用PIV技术观测Ma4的高速流动诱导的一道22°激波,结果显示30nm粒径的示踪粒子有更优秀的跟随响应能力;并以该粒子进行了不同条件下(包括斜激波与脱体激波)的跟随性实验验证,为高速流动PIV示踪粒子选择提供了实验支撑。
  • 图  1  上海交通大学多马赫数风洞

    Figure  1.  Multi-Mach number high-speed wind tunnel of Shanghai Jiao Tong University

    图  2  实验设置

    Figure  2.  Experimental setup

    图  3  模型图片

    Figure  3.  Image for models

    图  4  粒子布撒器罐体内旋风式气流示意图

    Figure  4.  Visualization of cyclone flow in particle seeder

    图  5  100nm TiO2示踪粒子流场图

    Figure  5.  Flow field images for 100nm TiO2

    图  6  30 nm TiO2示踪粒子流场图和数值模拟图

    Figure  6.  Flow field images and numerical simulation results for 30nm TiO2

    图  7  粒径30nm和100nm的粒子图像

    Figure  7.  Images of 30 and 100nm diameter particles

    图  8  30°和45°尖劈模型的流场图和数值模拟图

    Figure  8.  Flow field and number simulation images for 30° and 45° models

    表  1  实验工况

    Table  1.   Conditions of test cases

    Ma Specific heat ratio γ Total-temperature/K Total-pressure/MPa
    4 1.39 400 0.4
    下载: 导出CSV

    表  2  10°模型下示踪粒子松弛特性

    Table  2.   Relaxation characteristics of tracer particles on 10° wedge model

    30nm 100nm
    Relative Reynold number 0.03 0.1
    Particle Knudsen number 14 4
    Relative Mach number 0.29(t=τ)
    Relaxation time/μs 1.55 5.24
    Relaxation distance/mm 0.38 1.29
    下载: 导出CSV

    表  3  30nm示踪粒子尖劈模型诱导激波特性

    Table  3.   Induced shockwave characteristics over wedge models with 30nm tracer particles

    10°wedge 30°wedge
    Relative Reynold number 0.03 0.08
    Particle Knudsen number 14 14
    Relative Mach number 0.27 0.78
    Shock wave angle/(°) 22 44
    Freestream velocity U/(m·s-1) 797.8 797.8
    Velocity Un1/(m·s-1) 299.7 565.1
    Shockwave strength Man1 3.71 2.87
    Velocity Un2/(m·s-1) 157.6 151.9
    Relaxation time/μs 1.55 1.97
    Relaxation distance/mm 0.38 0.81
    下载: 导出CSV

    表  4  激波面角度

    Table  4.   Shock wave angle

    理论值 100nm示踪粒子 30nm示踪粒子
    激波面角度 22.23° 21.34° 21.75°
    下载: 导出CSV

    表  5  激波角与误差

    Table  5.   Shock wave angels and error of 30° and 45° models

    10°模型 30°模型 45°模型
    (度数) 误差 (度数) 误差
    理论值 22.23 0 44.07 0 脱体激波
    实验值 21.75 -2.1% 42.64 -3.2%
    数值模拟 23.55 5.9% 44.28 0.5%
    下载: 导出CSV
  • [1] Scarano F, Haertig J. Application of non-isotropic resolution PIV in supersonic and hypersonic flows[J]. Journal of Mechanical Design, 2009, 100(2):208-215.
    [2] Haertig J, Havermann M, Rey C, et al. Particle image velocimetry in Mach 3.5 and 4.5 shock-tunnel flows[J]. AIAA Journal, 2002, 40(6):1056-1060. doi: 10.2514/2.1787
    [3] 徐惊雷. PIV技术在超及高超声速流场测量中的研究进展[J].力学进展, 2012, 42(1):81-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200110672

    Xu J L. The development of the PIV experimental study of the super/hypersoinc flowfield[J]. Advances in Mechanics, 2012, 42(1):81-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200110672
    [4] Schrijer F F J, Scarano F, Oudheusden B W V. Application of PIV in a Mach 7 double-ramp flow[J]. Experiments in Fluids, 2006, 41(2):353-363. doi: 10.1007/s00348-006-0140-y
    [5] Melling A. Tracer particles and seeding for particle image velocimetry[J]. Measurement Science & Technology, 1997, 8(12):1406-1406. doi: 10.1088-0957-0233-8-12-005/
    [6] 赵玉新, 易仕和, 田立丰, 等.基于纳米粒子的超声速流动成像[J].中国科学, 2009, 39(12):1911-1918. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200902526593
    [7] 陈小虎, 陈方, 刘洪, 等.高速流动PIV示踪粒子跟随性分析[J].气体物理, 2017, 2(4):36-45. http://d.old.wanfangdata.com.cn/Periodical/qtwl201704004

    Chen X H, Chen F, Liu H, et al. Tracking characteristics of PIV tracer particles in high speed flows[J]. Physics of Gases, 2017, 2(4):36-45. http://d.old.wanfangdata.com.cn/Periodical/qtwl201704004
    [8] 易仕和, 何霖, 田立丰, 等.纳米示踪平面激光散射技术在激波复杂流场测量中的应用[J].力学进展, 2012, 42(2):197-205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200507863

    Yi S H, He L, Tian L F, et al. The application of nano-tracer planar laser scattering in shock wave field measurement[J]. Advances in Mechanics, 2012, 42(2):197-205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200507863
    [9] Chen F, Liu H, Rong Z. Development and application of nanoparticle tracers for PIV in supersonic and hypersonic flows[R]. AIAA-2012-0036.
    [10] 张亚, 陈方, 刘洪, 等.高速流动中PIV示踪粒子松弛特性研究[J].实验流体力学, 2013, 27(6):70-75. doi: 10.3969/j.issn.1672-9897.2013.06.013

    Zhang Y, Chen F, Liu H, et al. Research on the relaxation characteristics of PIV tracer particles in supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):70-75. doi: 10.3969/j.issn.1672-9897.2013.06.013
    [11] 刘伟, 万国新, 陈景兵, 等.可压缩气固混合层中离散相与连续相的相互作用研究[J].计算力学学报, 2009, 26(1):8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=SciencePaper201303040000216922

    Liu W, Wan G X, Chen J B, et al. Study on the interaction between the continuous and the dispersed phases in compressible gas-solid mixing layer[J]. Chinese Journal of Computational Mechanics, 2009, 26(1):8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=SciencePaper201303040000216922
    [12] 樊建人, 郑友取, 岑可法.三维气固两相混合层湍流拟序结构的直接数值模拟[J].工程热物理学报, 2001, 22(2):241-244. doi: 10.3321/j.issn:0253-231X.2001.02.031

    Fan J R, Zheng Y Q, Cen K F. Direct numerical simulation in turbulent coherent structures of three-dimensional gas-particle two-phase mixing layer[J]. Journal of Engineering Thermophysics, 2001, 22(2):241-244. doi: 10.3321/j.issn:0253-231X.2001.02.031
    [13] 樊建人, 罗坤, 金晗辉, 等.直接数值模拟三维气固两相混合层中颗粒与流体的双向耦合[J].中国电机工程学报, 2003, 23(4):153-157. doi: 10.3321/j.issn:0258-8013.2003.04.031

    Fan J R, Luo K, Jin H H, et al. Direct numerical simulation of the two-way coupling effects between particles and fluid in the three-dimensional particle-laden mixing layer[J]. Proceedings of the CSEE, 2003, 23(4):153-157. doi: 10.3321/j.issn:0258-8013.2003.04.031
    [14] 李召好, 李法强, 马培华, 等.超细粉末团聚机理及其消除方法[J].盐湖研究, 2005, 13(1):31-36. doi: 10.3969/j.issn.1008-858X.2005.01.006

    Li Z H, Li F Q, Ma P H, et al. Eliminetion methods and mechanism of agglomeration of ultrafine powders[J]. Journal of Salk Lake Research, 2005, 13(1):31-36. doi: 10.3969/j.issn.1008-858X.2005.01.006
    [15] Scarano F, Oudheusden B W V. Plannar velocity measurements of a two-dimensional compressible wake[J]. Experiments in Fluids, 2003, 34(3):430-441. doi: 10.1007/s00348-002-0581-x
    [16] Urban W, Mungal M, Urban W, et al. Planar velocity measurements in compressible mixing layers[J]. Journal of Fluid Mechanics, 2001, 431(431):189-222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0214907656
    [17] Chen F, Liu H, Yang Z, et al. Tracking characteristics of tracer particles for PIV measurements in supersonic flows[J]. Chinese Journal of Aeronautics, 2017, 30(2):577-585. doi: 10.1016/j.cja.2016.12.033
    [18] 刘洪, 陈方, 励孝杰, 等.高速复杂流动PIV技术研究实践与挑战[J].实验流体力学, 2016, 30(1):28-42. http://www.syltlx.com/CN/abstract/abstract10899.shtml

    Liu H, Cheng F, Li X J, et al. Practices and challenges on PIV technology in high speed complex flows[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1):28-42. http://www.syltlx.com/CN/abstract/abstract10899.shtml
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  164
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-13
  • 修回日期:  2018-03-03
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日