留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过冷大水滴相继撞壁对结冰影响的实验研究

徐弘 孔维梁 王福新 刘洪

徐弘, 孔维梁, 王福新, 等. 过冷大水滴相继撞壁对结冰影响的实验研究[J]. 实验流体力学, 2018, 32(2): 28-34. doi: 10.11729/syltlx20170112
引用本文: 徐弘, 孔维梁, 王福新, 等. 过冷大水滴相继撞壁对结冰影响的实验研究[J]. 实验流体力学, 2018, 32(2): 28-34. doi: 10.11729/syltlx20170112
Xu Hong, Kong Weiliang, Wang Fuxin, et al. Experimental study on the effects of successive supercooled large droplets impacting[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 28-34. doi: 10.11729/syltlx20170112
Citation: Xu Hong, Kong Weiliang, Wang Fuxin, et al. Experimental study on the effects of successive supercooled large droplets impacting[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 28-34. doi: 10.11729/syltlx20170112

过冷大水滴相继撞壁对结冰影响的实验研究

doi: 10.11729/syltlx20170112
详细信息
    作者简介:

    徐弘(1993-), 安徽滁州人, 硕士研究生。研究方向:飞机结冰与非稳态相变传热。通信地址:上海市闵行区东川路800号(200240)。E-mail:xh_fighting@sjtu.edu.cn

    通讯作者:

    刘洪, E-mail:hongliu@sjtu.edu.cn

  • 中图分类号: V211.71

Experimental study on the effects of successive supercooled large droplets impacting

  • 摘要: 目前过冷大水滴(SLD)撞击结冰机理未能清楚解释SLD间的相互干扰对撞击结冰过程的影响。实验用高速相机拍摄双SLD偏移一定位置相继撞击壁面结冰的物理过程,研究双SLD落点间的偏移、相继撞击的时间间隔对结冰形态及结冰速度的影响。实验表明:双SLD间的相互干扰会抑制撞击后的回缩行为进而影响结冰形态,降低结冰速度,延长双SLD完全冻结时间:双SLD落点位置偏移量的大小对结冰形态和结冰速度的影响均很大,相继撞击时间间隔的长短对结冰形态影响不大,主要影响结冰速度。
  • 图  1  实验的总体布局图

    1, 9循环冷却水浴箱; 2 SLD发生器; 3螺旋微调支架; 4低温环境; 5支架底座; 6高速相机; 7平行光源系统; 8撞击表面; 10~13水压调节系统; 14温度监控仪; 15 PC终端

    Figure  1.  The overall layout of the experiment

    图  2  SLD制备发生系统

    Figure  2.  SLD preparation and generation system

    图  3  观测系统以及低温撞击实验平台

    1平行光源; 2撞击实验表面及制冷芯片; 3高速相机

    Figure  3.  High-speed shooting system and test piece platform

    图  4  双SLD相继撞击壁面实验示意图

    Figure  4.  Schematic diagram of two SLDs successively impacting on the surface

    图  5  原始数据处理提取流程

    Figure  5.  Flow chart of initial data processing

    图  6  双SLD相继撞击壁面结冰过程图

    Figure  6.  The freezing process diagram of two SLDs impacting on the substrate

    图  7  不同实验工况对比图:(a)单SLD撞击结冰(b)、(d) L/D为0, Δt分别为0.6s和0.9s. (c)和(e) L/D分别为0.5和1.2, Δt为0.6s

    Figure  7.  Contrast images of different experimental conditions: (a) a single SLD impacts and freezes; (b), (d) L/D=0, Δt=0.6s, 0.9s; (c), (e) L/D=0.5, 1.2, Δt= 0.6s

    图  8  SLD间的干扰和回缩率之比的关系

    Figure  8.  Relationships between interactions and the ratio of the shrinking rate

    图  9  接触角变化图

    Figure  9.  The change of contact angle

    图  10  不同实验工况下完全冻结时间对比图

    Figure  10.  Contrast images of complete freezing time under different experimental conditions

    图  11  结冰时间变化率与双SLD间的干扰的关系

    Figure  11.  Relationship between the rate of freezing time and interactions

    图  12  ΔτL/D变化图

    Figure  12.  Relationship between Δτ and L/D

    图  13  实验工况点及区域划分

    Figure  13.  The experimental working condition and region divisions

    表  1  实验变量表

    Table  1.   Experimental variables

    Experimental variable L/D Δt/s
    Value 0~1.5 0.3、0.6、0.9
    下载: 导出CSV
  • [1] Chandra S, Avedisian C T. The collision of a droplet with a solid surface[J]. Proceedings Mathematical & Physical Sciences, 1991, 432(1884):13-41.
    [2] Bennett T, Poulikakos D. Splat-quench solidification:estimating the maximum spreading of a droplet impacting a solid surface[J]. Journal of Materials Science, 1993, 28(4):963-970. doi: 10.1007/BF00400880
    [3] Mundo C, Sommerfeld M, Tropea C. Droplet-wall collisions:experimental studies of the deformation and breakup process[J]. International Journal of Multiphase Flow, 1995, 21(2):151-173. doi: 10.1016/0301-9322(94)00069-V
    [4] Quero M, Hammond D W, Purvis R. Analysis of supercooled water droplet impact on a thin water layer and ice growth[C]. 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006. https://ueaeprints.uea.ac.uk/view/divisions/MTH.default.html
    [5] Bathel B F, Stephen N, Johnson L. Prediction of post contact parameters of fluid droplet impact on a smooth surface[J]. AIAA Journal, 2015, 45(7):1725-1733. https://www.sciencedirect.com/science/article/pii/S0017931011005977
    [6] 王桥, 肖京平, 刘森云.过冷大水滴变形及阻力特性的温度影响实验研究[J].实验流体力学, 2016, 30(3):21-26. http://www.syltlx.com/CN/abstract/abstract10929.shtml

    Wang Q, Xiao J P, Liu S Y. Experimental study on temperature effect on deformation and drag characteristics of supercooled large droplet[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3):21-26. http://www.syltlx.com/CN/abstract/abstract10929.shtml
    [7] 桑为民, 贾韫泽, 鲁天.水滴撞击飞溅效应对过冷大水滴结冰影响研究[J].西北工业大学学报, 2016, 34(5):739-746. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xbgd201605001&dbname=CJFD&dbcode=CJFQ

    Sang W M, Jia Y Z, Lu T. Numerical analysis of splashing for freezing effects at supercooled large droplet impingement[J]. Journal of Northwestern Polytechnical University, 2016, 34(5):739-746. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xbgd201605001&dbname=CJFD&dbcode=CJFQ
    [8] 闵现花. 结冰条件下过冷水滴撞击特性及热平衡分析[D]. 上海: 上海交通大学, 2010.

    Min X H. Supercooled water droplet impingement property and thermal balance analysis under the condition of icing[D]. Shanghai: Shanghai Jiao Tong University, 2010.
    [9] Jung S, Tiwari M K, Doan N V. Mechanism of supercooled droplet freezing on surfaces[J]. Nature Communications, 2012, 3:615. doi: 10.1038/ncomms1630
    [10] 李海星. SLD碰撞结冰机理实验研究[D]. 上海: 上海交通大学, 2013.

    Li H X. Experimental study of the mechanism of SLD's impacting-icing[D]. Shanghai: Shanghai Jiao Tong University, 2013.
    [11] Potapczuk M G. Aircraft icing research at NASA Glenn research center[J]. Journal of Aerospace Engineering, 2013, 26(2):260-276. doi: 10.1061/(ASCE)AS.1943-5525.0000322
    [12] 杨国敏, 郭开华, 李宁.过冷水滴碰撞导线表面结冰机理的实验研究[J].制冷学报, 2011, 32(5):37-41. https://www.researchgate.net/profile/Guomin_Yang/publication/282359876_Experimental_Study_on_the_Freezing_Mechanism_of_Super-cooled_Water_Droplets_Impacting_on_a_Wire/links/560e71dc08ae48337515f8ab.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail

    Yang G M, Guo K H, Li N. Freezing mechanism of supercooled water droplet impacting on metal surfaces[J]. International Journal of Refrigeration, 2011, 32(5):37-41. https://www.researchgate.net/profile/Guomin_Yang/publication/282359876_Experimental_Study_on_the_Freezing_Mechanism_of_Super-cooled_Water_Droplets_Impacting_on_a_Wire/links/560e71dc08ae48337515f8ab.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [13] Federal Aviation Administration. Airplane and engine certification requirements in supercooled large drop, mixed phase and ice crystal icing condition, final rule[M]. Department of Transportation, November 4th, 2014.
    [14] Ghafouri-Azar R, Shakeri S, Chandra S. Interactions between molten metal droplets impinging on a solid surface[J]. International Journal of Heat & Mass Transfer, 2003, 46(8):1395-1407. https://www.sciencedirect.com/science/article/pii/S0017931002004039
    [15] Fujimoto H, Tong A Y, Takuda H. Interaction phenomena of two water droplets successively impacting onto a solid surface[J]. International Journal of Thermal Sciences, 2008, 47(3):229-236. doi: 10.1016/j.ijthermalsci.2007.02.006
    [16] Zhang C, Liu H. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing[J]. Physics of Fluids, 2016, 28(6):260-283. https://www.osti.gov/scitech/biblio/22598959
    [17] Jin Z, Zhang H, Yang Z. Experimental investigation of the impact and freezing processes of a water droplet on an ice surface[J]. International Journal of Heat & Mass Transfer, 2017, 109:716-724. doi: 10.1021/acsami.6b02321?src=recsys
    [18] 王静, 孔维梁, 王福新.表面能对过冷水中冰生长的影响[J].上海交通大学学报, 2016, 50(4):588-594. http://xuebao.sjtu.edu.cn/CN/Y2016/V50/I04/588

    Wang J, Kong W L, Wang F X. Experimental study of surface energy on growth of icing in supercooled water[J]. Journal of Shanghai Jiao Tong University, 2016, 50(4):588-594. http://xuebao.sjtu.edu.cn/CN/Y2016/V50/I04/588
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  78
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-29
  • 修回日期:  2017-10-17
  • 刊出日期:  2018-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日