留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体圆柱射流在气流中的破碎特性实验研究

邓甜 蒋帅 高绪万

邓甜, 蒋帅, 高绪万. 液体圆柱射流在气流中的破碎特性实验研究[J]. 实验流体力学, 2018, 32(1): 78-83, 97. doi: 10.11729/syltlx20170107
引用本文: 邓甜, 蒋帅, 高绪万. 液体圆柱射流在气流中的破碎特性实验研究[J]. 实验流体力学, 2018, 32(1): 78-83, 97. doi: 10.11729/syltlx20170107
Deng Tian, Jiang Shuai, Gao Xuwan. Experimental study of the fragmentation behavior of a cylindrical liquid jet into crossflow[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 78-83, 97. doi: 10.11729/syltlx20170107
Citation: Deng Tian, Jiang Shuai, Gao Xuwan. Experimental study of the fragmentation behavior of a cylindrical liquid jet into crossflow[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 78-83, 97. doi: 10.11729/syltlx20170107

液体圆柱射流在气流中的破碎特性实验研究

doi: 10.11729/syltlx20170107
基金项目: 

国家自然科学基金 51506216

中央高校基本科研业务费中国民航大学专项 ZXH2012H001

详细信息
    作者简介:

    邓甜(1982-), 女, 新疆克拉玛依市人, 讲师。研究方向:多相流流动界面现象。通信地址:天津市东丽区津北公路2898号北教24-511(300300)。E-mail:dengtian.siae@foxmail.com

    通讯作者:

    邓甜, E-mail:dengtian.siae@foxmail.com

  • 中图分类号: V219

Experimental study of the fragmentation behavior of a cylindrical liquid jet into crossflow

  • 摘要: 本文采用高速相机对低速横向气流作用下的圆柱射流表面波发展及液柱断裂和破碎进行观察研究。实验喷嘴为直射式,孔径为1mm,长径比为20。工质采用水和空气;工况为:温度293K,液体射流速度为2~20m/s,雷诺数为2400~22400,横向气流速度为10~40m/s,气流韦伯数为1.6~25.6,液气动量比为5~127。高速相机帧幅为2000,曝光时间为16s。通过实验观察到横向气流气体韦伯数的变化导致射流破碎形式呈现不同形式变化,液体射流的无量纲表面波波长与气流韦伯数的-0.31幂指数方成正比;主液柱断裂点沿横向气流方向的距离随着液气动量比的增大而减小,而沿初始射流方向的距离随液气动量比的增大而增大;断裂后产生的液滴在沿横向气流方向的速度分量为横向气流速度的0.1倍左右,而沿初始液体射流方向的速度分量先呈现出与液气动量比线性增长关系,直到其变为射流初始速度的0.8倍左右并保持在这一水平。在上述研究基础上,本文拟合了低速射流表面波的波长与气流韦伯数间关系式以及射流破碎位置、射流轨迹及液柱断裂产生液滴的速度与射流初始条件间的数学关系。
  • 图  1  射流实验台示意图

    1.空压机; 2.压力计; 3.储气罐; 4.截止阀; 5.压力计; 6.减压阀; 7.观测段; 8.风速计; 9.喷嘴; 10.流量计; 11.截止阀; 12.压力储液罐; 13.减压阀; 14.高压气罐; 15.高速相机; 16.处理计算机

    Figure  1.  Experiment system

    图  2  射流相关参数定义

    Figure  2.  Definition of parameters

    图  3  射流液柱在横向气流中的发展与破碎(vj=5m, q=34)

    Figure  3.  Development and breakup of the jet in the crossflow(vj=5m, q=34)

    图  4  表面波与断裂处局部放大图

    Figure  4.  Local enlarged drawing of surface wave and breakup point

    图  5  无量纲表面波波长与气流韦伯数关系图

    Figure  5.  Relation between surface wavelength and Weber number

    图  6  射流液柱破碎点参数定义

    Figure  6.  Definition of parameter of breakup point

    图  7  无量纲破碎位置参数与q关系图

    Figure  7.  Breakpoint as a function of q

    图  8  无量纲横向破碎距离与液气动量比拟合关系图

    Figure  8.  Relation between the fracture point in x-direction and the momentum ratio of the liquid jet to the air

    图  9  无量纲轴向破碎距离与液气动量比拟合关系图

    Figure  9.  Relation between the fracture point in y-direction and the momentum ratio of the liquid jet to the air

    图  10  液滴速度计算方法

    Figure  10.  Calculation method of velocity

    图  11  液滴轴向方向速度与气流韦伯数及液气动量比的关系

    Figure  11.  Relationship between the axial velocity of liquid blob and the Weber number of the air with the momentum ratio

    图  12  液滴横向方向速度与气流韦伯数及液气动量比的关系

    Figure  12.  Relationship between the vertical velocity of liquid blob and the Weber number of the air with the momentum ratio

    表  1  穿透深度关系式拟合结果表

    Table  1.   Penetration result summary

    文献编号 穿透深度关系式
    6 y/d=4.3(q·x/d)0.33
    7 y/d=3.79q0.475(x/d)0.195We-0.068
    8 y/d=We-0.05q0.5(1.46ln(x/d)+1.5)
    9 y/d=0.92q0.5(x/d)0.33
    10 y/d=1.559q0.52ln(1+1.66x/d)
    11 y/d=2.207q0.409(x/d)0.421
    12 y/d=1.509q0.44ln(1+1.14x/d)
    13 y/d=6.13q0.43(x/d)0.23
    14 y/d=0.167q0.31(x/d)0.31Rej0.14
    注:y:轴向破碎距离, mm; x:横向破碎距离, mm; q:液气动量比; d:实验用喷嘴直径, mm; j:液体射流; We:韦伯数; Re:雷诺数
    下载: 导出CSV

    表  2  实验工况及参数设置

    Table  2.   Experimental parameters

    参数名称和单位 参数值
    温度T/K 293
    喷嘴孔径d/mm 1
    液体密度ρj/(kg·m-3) 997
    气体密度ρg(kg·m-3) 1.17
    液体射流速度vj/(m·s-1) 2~20
    横向气流速度vg/(m·s-1) 10~40
    液体粘度μj/(10-6Pa·s) 866
    表面张力系数σ/(10-3Nm-1) 70.9
    液体射流雷诺数Rej 2400~22400
    气流韦伯数Weg 1.6~25.6
    液气动量比q 5~127
    射流Ohnesorge数Oh 0.0026
    高速相机帧幅f 2000
    高速相机曝光时间/s 16
    下载: 导出CSV
  • [1] Ashgriz N, Yarin A L, Yarin A L, et al. Handbook of atomization and sprays[M]. Springer US, 2011:79-80.
    [2] Wu P K, Kirkendall K A, Fuller R P, et al. Breakup processes of liquid jets in subsonic crossflows[J]. Journal of Propulsion & Power, 2015, 13(1):64-73. http://cat.inist.fr/?aModele=afficheN&cpsidt=10620666
    [3] Samir T, San-Mou J, Hukam M, et al. Liquid jets in subsonic crossflow[C]. AIAA Aerospace Sciences Meeting and Exhibit, 2005, 2(1): 34-37.
    [4] Schetz J A, Ranger A A. Aerodynamic shattering of liquid drops[J]. AIAA Journal, 1969, 7(2):285-290. doi: 10.2514/3.5087
    [5] Lubarsky E, Shcherbik D, Bibik O, et al. Fuel jet in cross flow-experimental study of spray characteristics[M]. Advanced Fluid Dynamics, 2012:176-177.
    [6] Bellofiore A, Cavaliere A, Ragucci R. Air density effect on the atomization of liquid jets in crossflow[J]. Combustion Science & Technology, 2007, 179(1):319-342. https://www.researchgate.net/publication/245312136_Air_density_effect_on_the_atomization_of_liquid_jets_in_crossflow
    [7] Ragucci R, Bellofiore A, Cavaliere A. Breakup and breakdown of bent kerosene jets in gas turbine conditions[J]. Proceedings of the Combustion Institute, 2007, 31(2):2231-2238. doi: 10.1016/j.proci.2006.07.204
    [8] Bellofiore A. The penetration characteristics of normally injected kerosene liquid jet in high weber number flow[C]. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007, 16(4): 71-82. https://www.sciencedirect.com/science/article/pii/S0264127516310528
    [9] Chen T, Smith C, Schommer D, et al. Multi-zone behavior of transverse liquid jet in high-speed flow[C]. 31st AIAA Aerospace Sciences Meeting and Exhibit, 2013, 2: 122-129.
    [10] Wang Q, Mondragon U M, Brown C T, et al. Characterization of trajectory, break point, and break point dynamics of a plain liquid jet in a crossflow[J]. Atomization & Sprays, 2011, 21(3):203-219. https://www.researchgate.net/publication/309107103_Evaluation_of_column_breakpoint_and_trajectory_for_a_plain_liquid_jet_injected_into_a_crossflow
    [11] Amighi A, Eslamian M, Ashgriz N. Trajectory of a liquid jet in high pressure and high temperature subsonic air crossflow[J]. Proceedings of Iclass, 2009, 1(3):211-218. http://www.dl.begellhouse.com/journals/6a7c7e10642258cc,1f4f813466ce2d6b,7c27430f23c50712.html
    [12] Tambe S, Jeng S M, Mongia H, et al. Liquid jets in subsonic crossflow[J]. AIAA Journal, 2004, 15(9):56-71. https://etd.ohiolink.edu/!etd.send_file?accession=ucin1100876702&disposition=inline
    [13] Yoon H J, Hong J G, Lee C W, et al. Correlations for penetration height of single and double liquid jets in cross flow under high-temperature conditions[J]. Atomization & Sprays, 2011, 21(8):673-686. https://www.researchgate.net/publication/269624724_Correlations_for_penetration_height_of_single_and_double_liquid_jets_in_cross_flow_under_high-temperature_conditions
    [14] Phillips J C, Pch M, Thomas N H. Air flow and droplet motions produced by interaction of flat-fan sprays and cross flows[J]. Atomization & Sprays, 2000, 10(1):83-104. https://www.sciencedirect.com/science/article/pii/S0168169909002282
    [15] 万云霞, 黄勇, 朱英.液体圆柱射流破碎过程的实验[J].航空动力学报, 2008, 23(2):208-214. http://www.doc88.com/p-4502158177738.html

    Wan Y X, Huang Y, Zhu Y. Experiment on the breakup process of free round liquid jet[J]. Journal of Aerospace Power, 2008, 23(2):208-214. http://www.doc88.com/p-4502158177738.html
    [16] Less D M, Schetz J A. Transient behavior of liquid jets injected normal to ahigh-velocitygas stream[J]. AIAA Journal, 2015, 24(24):1979-1986. https://www.researchgate.net/publication/234393341_Transient_behavior_of_liquid_jets_injected_normal_to_a_high-velocity_gas_stream
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  95
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-16
  • 修回日期:  2017-10-09
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日